Skip to main content

Advertisement

Log in

Successful Peripheral Vascular Intervention in Patients with High-risk Comorbidities or Lesion Characteristics

  • Peripheral Vascular Disease (WS Jones, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Certain comorbidities and lesion characteristics are associated with increased risk for procedural complications, limb events, and cardiovascular events following peripheral vascular intervention (PVI) in patients with peripheral arterial disease (PAD). The purpose of this review is to provide an overview of high-risk modifiable and unmodifiable patient characteristics and its relative impact on clinical outcomes such as amputation risk and mortality. Furthermore, general approaches to potentially mitigating these risks through pre-intervention planning and use of modern devices and techniques are discussed.

Recent Findings

Diabetes, tobacco use, and older age remain strong risk factors for the development of peripheral arterial disease. Recent data highlight the significant risk of polyvascular disease on major limb and cardiac events in advanced PAD, and ongoing studies are assessing this risk specifically after PVI. Challenging lesion characteristics such as calcified disease and chronic total occlusions can be successfully treated with PVI by utilizing novel devices (e.g., intravascular lithotripsy, re-entry devices) and techniques (e.g., subintimal arterial “flossing” with antegrade-retrograde intervention).

Summary

Understanding high-risk patient comorbidities and lesion characteristics will improve our ability to counsel and manage patients with advanced PAD. Continued device innovation and novel techniques will aid in procedural planning for successful interventions to improve clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Goodney PP, Beck AW, Nagle J, Welch HG, Zwolak RM. National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J Vasc Surg. 2009;50(1):54–60. https://doi.org/10.1016/j.jvs.2009.01.035.

    Article  PubMed  Google Scholar 

  2. Hawkins AT, Schaumeier MJ, Smith AD, Hevelone ND, Nguyen LL. When to call it a day: incremental risk of amputation and death after multiple revascularization. Ann Vasc Surg. 2014;28(1):35–47. https://doi.org/10.1016/j.avsg.2013.09.002.

    Article  PubMed  Google Scholar 

  3. Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J Vasc Surg. 2019;69(6S):3S–125S e40. https://doi.org/10.1016/j.jvs.2019.02.016This set of guidelines addresses specifically patients with chronic limb threatening ischemia and presents a comprehensive overview of the literature relevant to this patient cohort.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC Guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69(11):1465–508. https://doi.org/10.1016/j.jacc.2016.11.008This set of guidelines addresses all patients with PAD, rather than being limited to those with CLTI, and importantly offers more specific guidance about appropriate medical management.

    Article  PubMed  Google Scholar 

  5. Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116(9):1509–26. https://doi.org/10.1161/CIRCRESAHA.116.303849.

    Article  CAS  PubMed  Google Scholar 

  6. Jude EB, Oyibo SO, Chalmers N, Boulton AJ. Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care. 2001;24(8):1433–7. https://doi.org/10.2337/diacare.24.8.1433.

    Article  CAS  PubMed  Google Scholar 

  7. Shammas AN, Jeon-Slaughter H, Tsai S, Khalili H, Ali M, Xu H, et al. Major limb outcomes following lower extremity endovascular revascularization in patients with and without diabetes mellitus. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2017;24(3):376–82. https://doi.org/10.1177/1526602817705135This was a large study of patients who all underwent endovascular procedures with well-characterized disease- and lesion-specific information, showing increased limb-related and mortality risks among patients with diabetes.

    Article  Google Scholar 

  8. van Haelst ST, Haitjema S, de Vries JP, Moll FL, Pasterkamp G, den Ruijter HM, et al. Patients with diabetes differ in atherosclerotic plaque characteristics and have worse clinical outcome after iliofemoral endarterectomy compared with patients without diabetes. J Vasc Surg. 2017;65(2):414–21.e5. https://doi.org/10.1016/j.jvs.2016.06.110.

    Article  PubMed  Google Scholar 

  9. Neupane S, Edla S, Maidona E, Sweet MC, Szpunar S, Davis T, et al. Long-term outcomes of patients with diabetes mellitus undergoing percutaneous intervention for popliteal and infrapopliteal peripheral arterial disease. Catheter Cardiovasc Interv : official journal of the Society for Cardiac Angiography & Interventions. 2018;92(1):117–23. https://doi.org/10.1002/ccd.27571.

    Article  Google Scholar 

  10. Patel VI, Mukhopadhyay S, Guest JM, Conrad MF, Watkins MT, Kwolek CJ, et al. Impact of severe chronic kidney disease on outcomes of infrainguinal peripheral arterial intervention. J Vasc Surg. 2014;59(2):368–75. https://doi.org/10.1016/j.jvs.2013.09.006.

    Article  PubMed  Google Scholar 

  11. Cheun TJ, Jayakumar L, Ferrer L, Miserlis D, Mitromaras C, Sideman MJ, et al. Implications of early failure of isolated endovascular tibial interventions. J Vasc Surg. 2020;72(1):233–40 e2. https://doi.org/10.1016/j.jvs.2019.11.035There are few studies reporting the outcomes specifically of failed interventions; this example nicely showed that failed attempts carried consequences, while also opening the door for future investigation into the benefits and risks of tibial intervention in a prospective population.

    Article  PubMed  Google Scholar 

  12. Heideman PP, Rajebi MR, McKusick MA, Bjarnason H, Oderich GS, Friese JL, et al. Impact of chronic kidney disease on clinical outcomes of endovascular treatment for femoropopliteal arterial disease. J Vasc Interv Radiol. 2016;27(8):1204–14. https://doi.org/10.1016/j.jvir.2016.04.036.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Low Wang CC, Blomster JI, Heizer G, Berger JS, Baumgartner I, Fowkes FGR, et al. Cardiovascular and limb outcomes in patients with diabetes and peripheral artery disease: the EUCLID trial. J Am Coll Cardiol. 2018;72(25):3274–84. https://doi.org/10.1016/j.jacc.2018.09.078.

    Article  PubMed  Google Scholar 

  14. Dick F, Diehm N, Galimanis A, Husmann M, Schmidli J, Baumgartner I. Surgical or endovascular revascularization in patients with critical limb ischemia: influence of diabetes mellitus on clinical outcome. J Vasc Surg. 2007;45(4):751–61. https://doi.org/10.1016/j.jvs.2006.12.022.

    Article  PubMed  Google Scholar 

  15. Singh S, Armstrong EJ, Sherif W, Alvandi B, Westin GG, Singh GD, et al. Association of elevated fasting glucose with lower patency and increased major adverse limb events among patients with diabetes undergoing infrapopliteal balloon angioplasty. Vasc Med (London, England). 2014;19(4):307–14. https://doi.org/10.1177/1358863X14538330.

    Article  CAS  Google Scholar 

  16. Nakamura N, Ueno Y, Tsuchiyama Y, Koike Y, Gohda M, Satani O. Isolated post-challenge hyperglycemia in patients with normal fasting glucose concentration exaggerates neointimal hyperplasia after coronary stent implantation. Circ J. 2003;67(1):61–7. https://doi.org/10.1253/circj.67.61.

    Article  CAS  PubMed  Google Scholar 

  17. Biscetti F, Ferraro PM, Hiatt WR, Angelini F, Nardella E, Cecchini AL, et al. Inflammatory cytokines associated with failure of lower-extremity endovascular revascularization (LER): a prospective study of a population with diabetes. Diabetes Care. 2019;42(10):1939–45. https://doi.org/10.2337/dc19-0408This study challenges conventional beliefs about the usefulness of glycated hemoglobin and fasting blood sugar in the setting of limb-related outcomes in patients with diabetes. It suggests that further investigation in this area may help clinicians more effectively risk stratify patients.

    Article  CAS  PubMed  Google Scholar 

  18. Xie JX, Glorioso TJ, Dattilo PB, Aggarwal V, Ho PM, Barón AE, et al. Effect of chronic kidney disease on mortality in patients who underwent lower extremity peripheral vascular intervention. Am J Cardiol. 2017;119(4):669–74. https://doi.org/10.1016/j.amjcard.2016.10.053.

    Article  PubMed  Google Scholar 

  19. Kim HO, Kim JM, Woo JS, Choi D, Ko YG, Ahn CM, et al. Effects of chronic kidney disease on clinical outcomes in patients with peripheral artery disease undergoing endovascular treatment: analysis from the K-VIS ELLA registry. Int J Cardiol. 2018;262:32–7. https://doi.org/10.1016/j.ijcard.2018.03.108.

    Article  PubMed  Google Scholar 

  20. Moussa Pacha H, Al-Khadra Y, Darmoch F, Soud M, Mamas MA, Moussa Pacha A, et al. In-hospital outcome of peripheral vascular intervention in dialysis-dependent end-stage renal disease patients. Catheter Cardiovasc Interv : official journal of the Society for Cardiac Angiography & Interventions. 2020;95(3):E84–e95. https://doi.org/10.1002/ccd.28522This paper used a very large cohort of patients to confirm and quantify the amount of increased risk of post-intervention adverse events experienced by patients with end stage renal disease.

    Article  Google Scholar 

  21. Tokuda T, Oba Y, Koshida R, Suzuki Y, Murata A, Ito T. The impact of femoropopliteal artery calcium score after endovascular treatment. Ann Vasc Surg. 2020;66:543–53. https://doi.org/10.1016/j.avsg.2019.10.081.

    Article  PubMed  Google Scholar 

  22. Sigterman TA, Bolt LJ, Krasznai AG, Snoeijs MG, Heijboer R, Schurink GH, et al. Loss of kidney function in patients with critical limb ischemia treated endovascularly or surgically. J Vasc Surg. 2016;64(2):362–8. https://doi.org/10.1016/j.jvs.2016.03.409.

    Article  PubMed  Google Scholar 

  23. Martinez-Rico C, Marti-Mestre X, Romera-Villegas A, Espinar-Garcia E, Iborra-Ortega E, Vila-Coll R. Contrast-induced nephropathy: a fact or fiction in lower limb revascularization? Ann Vasc Surg. 2017;44:277–81. https://doi.org/10.1016/j.avsg.2017.03.193.

    Article  PubMed  Google Scholar 

  24. Aboyans V, Ricco JB, Bartelink MEL, Bjorck M, Brodmann M, Cohnert T, et al. Editor’s Choice - 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg. 2018;55(3):305–68. https://doi.org/10.1016/j.ejvs.2017.07.018This is the most recent set of guidelines to address peripheral artery disease in general, representing a slight update on the 2016 ACC/AHA guidelines.

    Article  PubMed  Google Scholar 

  25. Bonaca MP, Bauersachs RM, Anand SS, Debus ES, Nehler MR, Patel MR, et al. Rivaroxaban in peripheral artery disease after revascularization. N Engl J Med. 2020;382(21):1994–2004. https://doi.org/10.1056/NEJMoa2000052.

    Article  CAS  PubMed  Google Scholar 

  26. Hiatt WR, Fowkes FG, Heizer G, Berger JS, Baumgartner I, Held P, et al. Ticagrelor versus clopidogrel in symptomatic peripheral artery disease. N Engl J Med. 2017;376(1):32–40. https://doi.org/10.1056/NEJMoa1611688.

    Article  CAS  PubMed  Google Scholar 

  27. Vlajinac HD, Marinkovic JM, Maksimovic MZ, Radak DJ, Arsic RB, Jorga JB. The prevalence of polyvascular disease in patients with carotid artery disease and peripheral artery disease. Kardiol Pol. 2019;77(10):926–34. https://doi.org/10.33963/KP.14945.

    Article  PubMed  Google Scholar 

  28. van Kuijk JP, Flu WJ, Welten GM, Hoeks SE, Chonchol M, Vidakovic R, et al. Long-term prognosis of patients with peripheral arterial disease with or without polyvascular atherosclerotic disease. Eur Heart J. 2010;31(8):992–9. https://doi.org/10.1093/eurheartj/ehp553.

    Article  PubMed  Google Scholar 

  29. Krishnamurthy V, Munir K, Rectenwald JE, Mansour A, Hans S, Eliason JL, et al. Contemporary outcomes with percutaneous vascular interventions for peripheral critical limb ischemia in those with and without poly-vascular disease. Vasc Med (London, England). 2014;19(6):491–9. https://doi.org/10.1177/1358863X14552013.

    Article  Google Scholar 

  30. Sigl M, Noe T, Ruemenapf G, Kraemer BK, Morbach S, Borggrefe M, et al. Outcomes of severe limb ischemia with tissue loss and impact of revascularization in haemodialysis patients with wound, ischemia, and foot infection (WIfI) stage 3 or 4. VASA Zeitschrift fur Gefasskrankheiten. 2020;49(1):63–71. https://doi.org/10.1024/0301-1526/a000819.

    Article  PubMed  Google Scholar 

  31. van den Berg MJ, Bhatt DL, Kappelle LJ, de Borst GJ, Cramer MJ, van der Graaf Y, et al. Identification of vascular patients at very high risk for recurrent cardiovascular events: validation of the current ACC/AHA very high risk criteria. Eur Heart J. 2017;38(43):3211–8. https://doi.org/10.1093/eurheartj/ehx102.

    Article  CAS  PubMed  Google Scholar 

  32. Alberts MJ, Bhatt DL, Mas JL, Ohman EM, Hirsch AT, Rother J, et al. Three-year follow-up and event rates in the international REduction of Atherothrombosis for Continued Health Registry. Eur Heart J. 2009;30(19):2318–26. https://doi.org/10.1093/eurheartj/ehp355.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gutierrez JA, Bhatt DL, Banerjee S, Glorioso TJ, Josey KP, Swaminathan RV, et al. Risk of obstructive coronary artery disease and major adverse cardiac events in patients with noncoronary atherosclerosis: insights from the Veterans Affairs Clinical Assessment, Reporting, and Tracking (CART) Program. Am Heart J. 2019;213:47–56. https://doi.org/10.1016/j.ahj.2019.04.004.

    Article  PubMed  Google Scholar 

  34. Hageman SHJ, de Borst GJ, Dorresteijn JAN, Bots ML, Westerink J, Asselbergs FW, et al. Cardiovascular risk factors and the risk of major adverse limb events in patients with symptomatic cardiovascular disease. Heart. 2020. https://doi.org/10.1136/heartjnl-2019-316088.

  35. Gutierrez JA, Mulder H, Jones WS, Rockhold FW, Baumgartner I, Berger JS, et al. Polyvascular disease and risk of major adverse cardiovascular events in peripheral artery disease: a secondary analysis of the EUCLID trial. JAMA Netw Open. 2018;1(7):e185239. https://doi.org/10.1001/jamanetworkopen.2018.5239.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Suarez C, Zeymer U, Limbourg T, Baumgartner I, Cacoub P, Poldermans D, et al. Influence of polyvascular disease on cardiovascular event rates. Insights from the REACH Registry. Vasc Med. 2010;15(4):259–65. https://doi.org/10.1177/1358863X10373299.

    Article  PubMed  Google Scholar 

  37. Price JF, Mowbray PI, Lee AJ, Rumley A, Lowe GD, Fowkes FG. Relationship between smoking and cardiovascular risk factors in the development of peripheral arterial disease and coronary artery disease: Edinburgh Artery Study. Eur Heart J. 1999;20(5):344–53. https://doi.org/10.1053/euhj.1998.1194.

    Article  CAS  PubMed  Google Scholar 

  38. Willigendael EM, Teijink JA, Bartelink ML, Kuiken BW, Boiten J, Moll FL, et al. Influence of smoking on incidence and prevalence of peripheral arterial disease. J Vasc Surg. 2004;40(6):1158–65. https://doi.org/10.1016/j.jvs.2004.08.049.

    Article  PubMed  Google Scholar 

  39. Agarwal S. The association of active and passive smoking with peripheral arterial disease: results from NHANES 1999-2004. Angiology. 2009;60(3):335–45. https://doi.org/10.1177/0003319708330526.

    Article  PubMed  Google Scholar 

  40. Aboyans V, Criqui MH, Denenberg JO, Knoke JD, Ridker PM, Fronek A. Risk factors for progression of peripheral arterial disease in large and small vessels. Circulation. 2006;113(22):2623–9. https://doi.org/10.1161/CIRCULATIONAHA.105.608679.

    Article  PubMed  Google Scholar 

  41. Armstrong EJ, Wu J, Singh GD, Dawson DL, Pevec WC, Amsterdam EA, et al. Smoking cessation is associated with decreased mortality and improved amputation-free survival among patients with symptomatic peripheral artery disease. J Vasc Surg. 2014;60(6):1565–71. https://doi.org/10.1016/j.jvs.2014.08.064.

    Article  PubMed  Google Scholar 

  42. Schillinger M, Exner M, Mlekusch W, Haumer M, Sabeti S, Ahmadi R, et al. Effect of smoking on restenosis during the 1st year after lower-limb endovascular interventions. Radiology. 2004;231(3):831–8. https://doi.org/10.1148/radiol.2313031088.

    Article  PubMed  Google Scholar 

  43. Schlieder I, Richard M, Nacar A, Rieger R, Bethge A, Vijayakumar S, et al. Active tobacco use in patients with claudication does not affect outcomes after endovascular interventions. Ann Vasc Surg. 2019;60:279–85. https://doi.org/10.1016/j.avsg.2019.02.016.

    Article  PubMed  Google Scholar 

  44. Fernandez N, McEnaney R, Marone LK, Rhee RY, Leers S, Makaroun M, et al. Predictors of failure and success of tibial interventions for critical limb ischemia. J Vasc Surg. 2010;52(4):834–42. https://doi.org/10.1016/j.jvs.2010.04.070.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ali SF, Smith EE, Reeves MJ, Zhao X, Xian Y, Hernandez AF, et al. Smoking paradox in patients hospitalized with coronary artery disease or acute ischemic stroke: findings from get with the guidelines. Circ Cardiovasc Qual Outcomes. 2015;8(6 Suppl 3):S73–80. https://doi.org/10.1161/CIRCOUTCOMES.114.001244.

    Article  PubMed  Google Scholar 

  46. Yadav M, Mintz GS, Genereux P, Liu M, McAndrew T, Redfors B, et al. The smoker’s paradox revisited: a patient-level pooled analysis of 18 randomized controlled trials. JACC Cardiovas Interv. 2019;12(19):1941–50. https://doi.org/10.1016/j.jcin.2019.06.034.

    Article  Google Scholar 

  47. Petrik PV, Gelabert HA, Moore WS, Quinones-Baldrich W, Law MM. Cigarette smoking accelerates carotid artery intimal hyperplasia in a dose-dependent manner. Stroke. 1995;26(8):1409–14. https://doi.org/10.1161/01.str.26.8.1409.

    Article  CAS  PubMed  Google Scholar 

  48. Ruixing Y, Qi B, Tangwei L, Jiaquan L. Effects of nicotine on angiogenesis and restenosis in a rabbit model. Cardiology. 2007;107(2):122–31. https://doi.org/10.1159/000094658.

    Article  CAS  PubMed  Google Scholar 

  49. Mousa AY, AbuRahma AF, Bozzay J, Broce M, Barsoum E, Bates M. Anatomic and clinical predictors of reintervention after subclavian artery stenting. J Vasc Surg. 2015;62(1):106–14. https://doi.org/10.1016/j.jvs.2015.01.055.

    Article  PubMed  Google Scholar 

  50. Kokkinidis DG, Giannopoulos S, Haider M, Jordan T, Sarkar A, Singh GD, et al. Active smoking is associated with higher rates of incomplete wound healing after endovascular treatment of critical limb ischemia. Vasc Med (London, England). 2020;25(5):427–35. 1358863X20916526. https://doi.org/10.1177/1358863X20916526.

    Article  CAS  Google Scholar 

  51. Meltzer AJ, Evangelisti G, Graham AR, Connolly PH, Jones DW, Bush HL, et al. Determinants of outcome after endovascular therapy for critical limb ischemia with tissue loss. Ann Vasc Surg. 2014;28(1):144–51. https://doi.org/10.1016/j.avsg.2013.01.018.

    Article  PubMed  Google Scholar 

  52. Yan H, Chang Z, Liu Z. The risk factors for calcification vary among the different sections of the lower extremity artery in patients with symptomatic peripheral arterial disease. BMC Cardiovasc Disord. 2020;20(1):333. https://doi.org/10.1186/s12872-020-01615-w.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Huang CL, Wu IH, Wu YW, Hwang JJ, Wang SS, Chen WJ, et al. Association of lower extremity arterial calcification with amputation and mortality in patients with symptomatic peripheral artery disease. PLoS One. 2014;9(2):e90201. https://doi.org/10.1371/journal.pone.0090201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hylton JR, Smith CA, Li CS, Pevec WC. Octogenarians develop infrapopliteal arterial occlusive disease in the absence of traditional risk factors. Ann Vasc Surg. 2014;28(7):1712–8. https://doi.org/10.1016/j.avsg.2014.04.005.

    Article  PubMed  Google Scholar 

  55. Diehm N, Shang A, Silvestro A, Do DD, Dick F, Schmidli J, et al. Association of cardiovascular risk factors with pattern of lower limb atherosclerosis in 2659 patients undergoing angioplasty. Eur J Vasc Endovasc Surg : the official journal of the European Society for Vascular Surgery. 2006;31(1):59–63. https://doi.org/10.1016/j.ejvs.2005.09.006.

    Article  CAS  Google Scholar 

  56. Dick P, Barth B, Mlekusch W, Sabeti S, Amighi J, Schlager O, et al. Complications after peripheral vascular interventions in octogenarians. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2008;15(4):383–9. https://doi.org/10.1583/08-2459.1.

    Article  Google Scholar 

  57. Plaisance BR, Munir K, Share DA, Mansour MA, Fox JM, Bove PG, et al. Safety of contemporary percutaneous peripheral arterial interventions in the elderly insights from the BMC2 PVI (Blue Cross Blue Shield of Michigan Cardiovascular Consortium Peripheral Vascular Intervention) registry. JACC Cardiovasc Interv. 2011;4(6):694–701. https://doi.org/10.1016/j.jcin.2011.03.012.

    Article  PubMed  Google Scholar 

  58. Assi R, Brownson KE, Hall MR, Kuwahara G, Vasilas P, Dardik A. Advanced age and disease predict lack of symptomatic improvement after endovascular iliac treatment in male veterans. Yale J Biol Med. 2015;88(1):85–91.

    PubMed  PubMed Central  Google Scholar 

  59. Gonzalez L, Kassem M, Owora AH, Seligson MT, Richards CY, Monita MM, et al. Frailty and biomarkers of frailty predict outcome in veterans after open and endovascular revascularization. J Surg Res. 2019;243:539–52. https://doi.org/10.1016/j.jss.2019.06.040.

    Article  PubMed  Google Scholar 

  60. Dinga Madou I, Slade MD, Orion KC, Sarac T, Ochoa Chaar CI. The impact of functional status on the outcomes of endovascular lower extremity revascularization for critical limb ischemia in the elderly. Ann Vasc Surg. 2017;45:42–8. https://doi.org/10.1016/j.avsg.2017.06.047.

    Article  PubMed  Google Scholar 

  61. George EL, Kashikar A, Rothenberg KA, Barreto NB, Chen R, Trickey AW, et al. Comparison of surgeon assessment to frailty measurement in abdominal aortic aneurysm repair. J Surg Res. 2020;248:38–44. https://doi.org/10.1016/j.jss.2019.11.005.

    Article  PubMed  Google Scholar 

  62. de Athayde SR, Matielo MF, Brochado Neto FC, Pires APM, de Almeida RD, de Jesus MM, et al. Impact of calcification and infrapopliteal outflow on the outcome of endovascular treatment of femoropopliteal occlusive disease. JRSM Cardiovasc Dis. 2019;8:2048004019828941. https://doi.org/10.1177/2048004019828941.

    Article  Google Scholar 

  63. Watanabe Y, Hozawa K, Hiroyoshi K, Naganuma T, Ishiguro H, Nakamura S. The importance of patency of tibial run off arteries on clinical outcomes after stenting for chronic total occlusions in the superficial femoro-popliteal artery. Eur J Vasc Endovasc Surg : the official journal of the European Society for Vascular Surgery. 2018;56(6):857–63. https://doi.org/10.1016/j.ejvs.2018.08.001.

    Article  Google Scholar 

  64. Davies MG, Saad WE, Peden EK, Mohiuddin IT, Naoum JJ, Lumsden AB. Impact of runoff on superficial femoral artery endoluminal interventions for rest pain and tissue loss. J Vasc Surg. 2008;48(3):619–25; discussion 25-6. https://doi.org/10.1016/j.jvs.2008.04.013.

    Article  PubMed  Google Scholar 

  65. Bakken AM, Protack CD, Saad WE, Hart JP, Rhodes JM, Waldman DL, et al. Impact of chronic kidney disease on outcomes of superficial femoral artery endoluminal interventions. Ann Vasc Surg. 2009;23(5):560–8. https://doi.org/10.1016/j.avsg.2008.11.010.

    Article  PubMed  Google Scholar 

  66. Baer-Bositis HE, Hicks TD, Haidar GM, Sideman MJ, Pounds LL, Davies MG. Outcomes of isolated tibial endovascular intervention for rest pain in patients on dialysis. Ann Vasc Surg. 2018;46:118–26. https://doi.org/10.1016/j.avsg.2017.04.006.

    Article  PubMed  Google Scholar 

  67. Park UJ, Kim HT, Roh YN. Impact of tibial runoff on outcomes of endovascular treatment for femoropopliteal atherosclerotic lesions. Vasc Endovasc Surg. 2018;52(7):498–504. https://doi.org/10.1177/1538574418779466.

    Article  Google Scholar 

  68. Perry M, Callas PW, Alef MJ, Bertges DJ. Outcomes of peripheral vascular interventions via retrograde pedal access for chronic limb-threatening ischemia in a multicenter registry. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2020;27(2):205–10. https://doi.org/10.1177/1526602820908056.

    Article  Google Scholar 

  69. Lee MS, Mustapha J, Beasley R, Chopra P, Das T, Adams GL. Impact of lesion location on procedural and acute angiographic outcomes in patients with critical limb ischemia treated for peripheral artery disease with orbital atherectomy: a CONFIRM registries subanalysis. Catheter Cardiovasc Interv : official journal of the Society for Cardiac Angiography & Interventions. 2016;87(3):440–5. https://doi.org/10.1002/ccd.26349.

    Article  Google Scholar 

  70. McKinsey JF, Zeller T, Rocha-Singh KJ, Jaff MR, Garcia LA, Investigators DL. Lower extremity revascularization using directional atherectomy: 12-month prospective results of the DEFINITIVE LE study. JACC Cardiovasc Interv. 2014;7(8):923–33. https://doi.org/10.1016/j.jcin.2014.05.006.

    Article  PubMed  Google Scholar 

  71. Mohan S, Flahive JM, Arous EJ, Judelson DR, Aiello FA, Schanzer A, et al. Peripheral atherectomy practice patterns in the United States from the Vascular Quality Initiative. J Vasc Surg. 2018;68(6):1806–16. https://doi.org/10.1016/j.jvs.2018.03.417.

    Article  PubMed  Google Scholar 

  72. Hata Y, Iida O, Takahara M, Asai M, Masuda M, Okamoto S, et al. Infrapopliteal anatomic severity and delayed wound healing in patients with chronic limb-threatening ischemia in the era of the global limb anatomic staging system. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2020;27(4):641–6. 1526602820933880. https://doi.org/10.1177/1526602820933880.

    Article  Google Scholar 

  73. Kamenskiy A, Poulson W, Sim S, Reilly A, Luo J, MacTaggart J. Prevalence of calcification in human femoropopliteal arteries and its association with demographics, risk factors, and arterial stiffness. Arterioscler Thromb Vasc Biol. 2018;38(4):e48–57. https://doi.org/10.1161/ATVBAHA.117.310490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Langouet Q, Martinez R, Saint-Etienne C, Soulami RB, Harmouche M, Aupart M, et al. Incidence, predictors, impact, and treatment of vascular complications following transcatheter aortic valve implantation in a modern prospective cohort under real conditions. J Vasc Surg. 2020. https://doi.org/10.1016/j.jvs.2020.03.035.

  75. Freitas B, Steiner S, Bausback Y, Staab H, Branzan D, Banning-Eichenseer U, et al. Single-center experience with vascular closure devices in real-world endovascular peripheral interventions. J Cardiovasc Surg. 2018;59(6):797–803. https://doi.org/10.23736/S0021-9509.16.09207-7.

    Article  Google Scholar 

  76. Ichihashi S, Shibata T, Fujimura N, Nagatomi S, Yamamoto H, Kyuragi R, et al. Vessel calcification as a risk factor for in-stent restenosis in complex femoropopliteal lesions after zilver PTX paclitaxel-coated stent placement. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2019;26(5):613–20. https://doi.org/10.1177/1526602819860124.

    Article  Google Scholar 

  77. Okuno S, Iida O, Shiraki T, Fujita M, Masuda M, Okamoto S, et al. Impact of calcification on clinical outcomes after endovascular therapy for superficial femoral artery disease: assessment using the peripheral artery calcification scoring system. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2016;23(5):731–7. https://doi.org/10.1177/1526602816656612.

    Article  Google Scholar 

  78. Chowdhury MM, Makris GC, Tarkin JM, Joshi FR, Hayes PD, Rudd JHF, et al. Lower limb arterial calcification (LLAC) scores in patients with symptomatic peripheral arterial disease are associated with increased cardiac mortality and morbidity. PLoS One. 2017;12(9):e0182952. https://doi.org/10.1371/journal.pone.0182952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rocha-Singh KJ, Zeller T, Jaff MR. Peripheral arterial calcification: prevalence, mechanism, detection, and clinical implications. Catheter Cardiovasc Interv : official journal of the Society for Cardiac Angiography & Interventions. 2014;83(6):E212–20. https://doi.org/10.1002/ccd.25387.

    Article  Google Scholar 

  80. Kang IS, Lee W, Choi BW, Choi D, Hong MK, Jang Y, et al. Semiquantitative assessment of tibial artery calcification by computed tomography angiography and its ability to predict infrapopliteal angioplasty outcomes. J Vasc Surg. 2016;64(5):1335–43. https://doi.org/10.1016/j.jvs.2016.04.047.

    Article  PubMed  Google Scholar 

  81. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32. https://doi.org/10.1016/0735-1097(90)90282-t.

    Article  CAS  PubMed  Google Scholar 

  82. Kokkinidis DG, Alvandi B, Hossain P, Foley TR, Kielhorn CE, Singh GD, et al. Midterm outcomes after endovascular intervention for occluded vs stenosed external iliac arteries. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2018;25(2):183–91. https://doi.org/10.1177/1526602818761664.

    Article  Google Scholar 

  83. Revuelta Suero S, Martinez Lopez I, Hernandez Mateo M. Marques de Marino P, Cernuda Artero I, Cabrero Fernandez M et al. Outcomes of the endovascular treatment of stenotic lesions versus chronic total occlusions in the iliac sector. Ann Vasc Surg. 2016;34:157–63. https://doi.org/10.1016/j.avsg.2015.11.040.

    Article  PubMed  Google Scholar 

  84. Tokuda T, Oba Y, Koshida R, Suzuki Y, Murata A, Ito T. Prediction of the technical success of endovascular therapy in patients with critical limb threatening ischaemia using the global limb anatomical staging system. Eur J Vasc Endovasc Surg : the official journal of the European Society for Vascular Surgery. 2020. https://doi.org/10.1016/j.ejvs.2020.05.003.

  85. Bradaric C, Koppara T, Muller A, Haller B, Ott I, Cassese S, et al. Incidence and predictors of stent thrombosis after endovascular revascularisation of the superficial femoral artery. EuroIntervention. 2019;15(12):e1107–e14. https://doi.org/10.4244/EIJ-D-19-00187.

    Article  PubMed  Google Scholar 

  86. Wei LM, Zhu YQ, Zhang PL, Liu F, Lu HT, Zhao JG. Morphological characteristics of chronic total occlusion: predictors of different strategies for long-segment femoral arterial occlusions. Eur Radiol. 2018;28(3):897–909. https://doi.org/10.1007/s00330-017-5003-9.

    Article  PubMed  Google Scholar 

  87. Kokkinidis DG, Strobel A, Jawaid O, Haider MN, Alvandi B, Singh GD, et al. Development and validation of a predictive score for anterograde crossing of infrapopliteal chronic total occlusions: (The Infrapop-CTO Score). Catheter Cardiovasc Interv : official journal of the Society for Cardiac Angiography & Interventions. 2020;95(4):748–55. https://doi.org/10.1002/ccd.28693.

    Article  Google Scholar 

  88. Turkyilmaz S, Kavala AA. The relationship between plaque cap morphology and access technique in lower extremity chronic total occlusion. Vascular. 2019;27(2):135–43. https://doi.org/10.1177/1708538118809855.

    Article  PubMed  Google Scholar 

  89. Yacyshyn VJ, Thatipelli MR, Lennon RJ, Bailey KR, Stanson AW, Holmes DR Jr, et al. Predictors of failure of endovascular therapy for peripheral arterial disease. Angiology. 2006;57(4):403–17. https://doi.org/10.1177/0003319706290732.

    Article  PubMed  Google Scholar 

  90. Schillinger M, Exner M, Mlekusch W, Rumpold H, Ahmadi R, Sabeti S, et al. Vascular inflammation and percutaneous transluminal angioplasty of the femoropopliteal artery: association with restenosis. Radiology. 2002;225(1):21–6. https://doi.org/10.1148/radiol.2251011809.

    Article  PubMed  Google Scholar 

  91. Guo S, Zhang Z, Wang L, Yuan L, Bao J, Zhou J, et al. Six-month results of stenting of the femoropopliteal artery and predictive value of interleukin-6: comparison with high-sensitivity C-reactive protein. Vascular. 2020;28(6):715–21. 1708538120921005. https://doi.org/10.1177/1708538120921005.

    Article  CAS  PubMed  Google Scholar 

  92. Tarricone A, Ali Z, Rajamanickam A, Gujja K, Kapur V, Purushothaman KR, et al. Histopathological evidence of adventitial or medial injury is a strong predictor of restenosis during directional atherectomy for peripheral artery disease. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2015;22(5):712–5. https://doi.org/10.1177/1526602815597683.

    Article  Google Scholar 

  93. Favaretto E, Sartori M, Pacelli A, Conti E, Cosmi B. Coronary artery disease and restenosis after peripheral endovascular intervention are predictors of poor outcome in peripheral arterial disease. Acta Cardiol. 2019:1-8. doi:https://doi.org/10.1080/00015385.2019.1653565.

  94. Armstrong EJ, Singh S, Singh GD, Yeo KK, Ludder S, Westin G, et al. Angiographic characteristics of femoropopliteal in-stent restenosis: association with long-term outcomes after endovascular intervention. Catheter Cardiovasc Interv : official journal of the Society for Cardiac Angiography & Interventions. 2013;82(7):1168–74. https://doi.org/10.1002/ccd.24983.

    Article  Google Scholar 

  95. Tosaka A, Soga Y, Iida O, Ishihara T, Hirano K, Suzuki K, et al. Classification and clinical impact of restenosis after femoropopliteal stenting. J Am Coll Cardiol. 2012;59(1):16–23. https://doi.org/10.1016/j.jacc.2011.09.036This paper by Tosaka et al. established a now-widely used restenosis grading paradigm.

    Article  PubMed  Google Scholar 

  96. Javed U, Balwanz CR, Armstrong EJ, Yeo KK, Singh GD, Singh S, et al. Mid-term outcomes following endovascular re-intervention for iliac artery in-stent restenosis. Catheter Cardiovasc Interv : official journal of the Society for Cardiac Angiography & Interventions. 2013;82(7):1176–84. https://doi.org/10.1002/ccd.24975.

    Article  Google Scholar 

  97. Ansari F, Pack LK, Brooks SS, Morrison TM. Design considerations for studies of the biomechanical environment of the femoropopliteal arteries. J Vasc Surg. 2013;58(3):804–13. https://doi.org/10.1016/j.jvs.2013.03.052.

    Article  PubMed  Google Scholar 

  98. Goueffic Y, Della Schiava N, Thaveau F, Rosset E, Favre JP. Salomon du Mont L et al. Stenting or surgery for de novo common femoral artery stenosis. JACC Cardiovas Interv. 2017;10(13):1344–54. https://doi.org/10.1016/j.jcin.2017.03.046.

    Article  Google Scholar 

  99. Chan YC, Cheng SW, Cheung GC. A midterm analysis of patients who received femoropopliteal helical interwoven nitinol stents. J Vasc Surg. 2020;71(6):2048–55. https://doi.org/10.1016/j.jvs.2019.08.284This study is among the most recent to investigate the use of Supera stents, showing that stents placed in popliteal arteries did not fracture, but still had higher rates of restenosis than those placed in the superficial femoral artery.

    Article  PubMed  Google Scholar 

  100. Siracuse JJ, Gill HL, Cassidy SP, Messina MD, Catz D, Egorova N, et al. Endovascular treatment of lesions in the below-knee popliteal artery. J Vasc Surg. 2014;60(2):356–61. https://doi.org/10.1016/j.jvs.2014.02.012.

    Article  PubMed  Google Scholar 

  101. Stavroulakis K, Torsello G, Manal A, Schwindt A, Hericks C, Stachmann A, et al. Results of primary stent therapy for femoropopliteal peripheral arterial disease at 7 years. J Vasc Surg. 2016;64(6):1696–702. https://doi.org/10.1016/j.jvs.2016.05.073.

    Article  PubMed  Google Scholar 

  102. Shurtleff E, Vanderhyde M, Fitzwater F, Masoomi R, Maletsky L, Thomas P, et al. A novel unembalmed human cadaveric limb model for assessing conformational changes in self-expanding nitinol stents in the popliteal artery. Catheter Cardiovasc Interv : official journal of the Society for Cardiac Angiography & Interventions. 2019;93(1):113–9. https://doi.org/10.1002/ccd.27930.

  103. Rastan A, Krankenberg H, Baumgartner I, Blessing E, Muller-Hulsbeck S, Pilger E, et al. Stent placement versus balloon angioplasty for the treatment of obstructive lesions of the popliteal artery: a prospective, multicenter, randomized trial. Circulation. 2013;127(25):2535–41. https://doi.org/10.1161/CIRCULATIONAHA.113.001849.

    Article  PubMed  Google Scholar 

  104. Chang IS, Chee HK, Park SW, Yun IJ, Hwang JJ, Lee SA, et al. The primary patency and fracture rates of self-expandable nitinol stents placed in the popliteal arteries, especially in the P2 and P3 segments, in Korean patients. Korean J Radiol. 2011;12(2):203–9. https://doi.org/10.3348/kjr.2011.12.2.203.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mustapha JA, Diaz-Sandoval LJ, Saab F. Innovations in the endovascular management of critical limb ischemia: retrograde tibiopedal access and advanced percutaneous techniques. Curr Cardiol Rep. 2017;19(8):68. https://doi.org/10.1007/s11886-017-0879-1.

    Article  PubMed  Google Scholar 

  106. Dias-Neto M, Matschuck M, Bausback Y, Banning-Eichenseher U, Steiner S, Branzan D, et al. Endovascular treatment of severely calcified femoropopliteal lesions using the “pave-and-crack” technique: technical description and 12-month results. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2018;25(3):334–42. https://doi.org/10.1177/1526602818763352.

    Article  Google Scholar 

  107. Krishnan P, Tarricone A, Purushothaman KR, Purushothaman M, Vasquez M, Kovacic J, et al. An algorithm for the use of embolic protection during atherectomy for femoral popliteal lesions. JACC Cardiovas Interv. 2017;10(4):403–10. https://doi.org/10.1016/j.jcin.2016.12.014.

    Article  Google Scholar 

  108. Madhavan MV, Shahim B, Mena-Hurtado C, Garcia L, Crowley A, Parikh SA. Efficacy and safety of intravascular lithotripsy for the treatment of peripheral arterial disease: an individual patient-level pooled data analysis. Catheter Cardiovasc Interv : official journal of the Society for Cardiac Angiography & Interventions. 2020;95(5):959–68. https://doi.org/10.1002/ccd.28729This analysis pools results of five prior prospective studies of intravascular lithotripsy, offering early evidence of the technique’s safety and effectiveness.

    Article  Google Scholar 

  109. Brodmann M, Werner M, Holden A, Tepe G, Scheinert D, Schwindt A, et al. Primary outcomes and mechanism of action of intravascular lithotripsy in calcified, femoropopliteal lesions: results of Disrupt PAD II. Catheter Cardiovasc Interv : official journal of the Society for Cardiac Angiography & Interventions. 2019;93(2):335–42. https://doi.org/10.1002/ccd.27943.

    Article  Google Scholar 

  110. Armstrong EJ, Soukas PA, Shammas N, Chamberlain J, Pop A, Adams G, et al. Intravascular lithotripsy for treatment of calcified, stenotic iliac arteries: a cohort analysis from the Disrupt PAD III Study. Cardiovasc Revasc Med : including molecular interventions. 2020. https://doi.org/10.1016/j.carrev.2020.02.026.

  111. Gray WA, Cardenas JA, Brodmann M, Werner M, Bernardo NI, George JC, et al. Treating post-angioplasty dissection in the femoropopliteal arteries using the tack endovascular system: 12-month results from the TOBA II study. JACC Cardiovasc Interv. 2019;12(23):2375–84. https://doi.org/10.1016/j.jcin.2019.08.005.

    Article  PubMed  Google Scholar 

  112. Chou HH, Huang HL, Hsieh CA, Jang SJ, Cheng ST, Tsai SC, et al. Outcomes of endovascular therapy with the Controlled Antegrade Retrograde Subintimal Tracking (CART) or reverse CART Technique for long infrainguinal occlusions. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2016;23(2):330–8. https://doi.org/10.1177/1526602816630533.

    Article  Google Scholar 

  113. Zhuang KD, Patel A, Tan BS, Irani FG, Gogna A, Chan SX, et al. Outcome and distal access patency in subintimal arterial flossing with antegrade-retrograde intervention for chronic total occlusions in lower extremity critical limb ischemia. J Vasc Interv Radiol. 2020;31(4):601–6. https://doi.org/10.1016/j.jvir.2019.12.006.

    Article  PubMed  Google Scholar 

  114. Banerjee S, Jeon-Slaughter H, Tsai S, Mohammad A, Foteh M, Abu-Fadel M, et al. Comparative assessment of procedure cost and outcomes between guidewire and crossing device strategies to cross peripheral artery chronic total occlusions. JACC Cardiovasc Interv. 2016;9(21):2243–52. https://doi.org/10.1016/j.jcin.2016.08.010.

    Article  PubMed  Google Scholar 

  115. Bhatt H, Janzer S, George JC. Crossing techniques and devices in femoropopliteal chronic total occlusion intervention. Cardiovasc Revasc Med : including Molecular Interventions. 2017;18(8):623–31. https://doi.org/10.1016/j.carrev.2017.06.002.

    Article  Google Scholar 

  116. Kokkinidis DG, Katsaros I, Jonnalagadda AK, Avner SJ, Chaitidis N, Bakoyiannis C, et al. Use, safety and effectiveness of subintimal angioplasty and re-entry devices for the treatment of femoropopliteal chronic total occlusions: a systematic review of 87 studies and 4665 patients. Cardiovasc Revasc Med : including molecular interventions. 2020;21(1):34–45. https://doi.org/10.1016/j.carrev.2019.03.016.

    Article  Google Scholar 

  117. Krievins DK, Halena G, Scheinert D, Savlovskis J, Szopinski P, Kramer A, et al. One-year results from the DETOUR I trial of the PQ Bypass DETOUR System for percutaneous femoropopliteal bypass. J Vasc Surg. 2020. https://doi.org/10.1016/j.jvs.2020.02.043.

  118. Bosiers M, Deloose K, Callaert J, Verbist J, Hendriks J, Lauwers P, et al. Superiority of stent-grafts for in-stent restenosis in the superficial femoral artery: twelve-month results from a multicenter randomized trial. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2015;22(1):1–10. https://doi.org/10.1177/1526602814564385.

    Article  Google Scholar 

  119. Kinstner CM, Lammer J, Willfort-Ehringer A, Matzek W, Gschwandtner M, Javor D, et al. Paclitaxel-eluting balloon versus standard balloon angioplasty in in-stent restenosis of the superficial femoral and proximal popliteal artery: 1-year results of the PACUBA trial. JACC Cardiovasc Interv. 2016;9(13):1386–92. https://doi.org/10.1016/j.jcin.2016.04.012.

    Article  PubMed  Google Scholar 

  120. Kayssi A, Al-Jundi W, Papia G, Kucey DS, Forbes T, Rajan DK, et al. Drug-eluting balloon angioplasty versus uncoated balloon angioplasty for the treatment of in-stent restenosis of the femoropopliteal arteries. Cochrane Database Syst Rev. 2019;1:CD012510. https://doi.org/10.1002/14651858.CD012510.pub2.

    Article  PubMed  Google Scholar 

  121. Ott I, Cassese S, Groha P, Steppich B, Voll F, Hadamitzky M, et al. ISAR-PEBIS (Paclitaxel-Eluting Balloon Versus Conventional Balloon Angioplasty for In-Stent Restenosis of Superficial Femoral Artery): a randomized trial. J Am Heart Assoc. 2017;6(7):e006321. https://doi.org/10.1161/JAHA.117.006321.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dippel EJ, Makam P, Kovach R, George JC, Patlola R, Metzger DC, et al. Randomized controlled study of excimer laser atherectomy for treatment of femoropopliteal in-stent restenosis: initial results from the EXCITE ISR trial (EXCImer Laser Randomized Controlled Study for Treatment of FemoropopliTEal In-Stent Restenosis). JACC Cardiovasc Interv. 2015;8(1 Pt A):92–101. https://doi.org/10.1016/j.jcin.2014.09.009.

    Article  PubMed  Google Scholar 

  123. Feldman DN, Armstrong EJ, Aronow HD, Gigliotti OS, Jaff MR, Klein AJ, et al. SCAI consensus guidelines for device selection in femoral-popliteal arterial interventions. Catheter Cardiovasc Interv : official journal of the Society for Cardiac Angiography & Interventions. 2018;92(1):124–40. https://doi.org/10.1002/ccd.27635This helpful set of guidelines focusing on evidence supporting specific devices, rather than evidence supporting various approaches to specific disease states, and is therefore particularly helpful to the practicing interventionalist.

    Article  Google Scholar 

  124. Li X, Zhou M, Ding Y, Wang Y, Cai L, Shi Z. A systematic review and meta-analysis of the efficacy of debulking devices for in-stent restenosis of the femoropopliteal artery. J Vasc Surg. 2020;72(1):356–66 e5. https://doi.org/10.1016/j.jvs.2019.11.058.

    Article  PubMed  Google Scholar 

  125. Katsanos K, Spiliopoulos S, Kitrou P, Krokidis M, Karnabatidis D. Risk of death following application of paclitaxel-coated balloons and stents in the femoropopliteal artery of the leg: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2018;7(24):e011245. https://doi.org/10.1161/JAHA.118.011245This meta-analysis has sparked significant debate about the safety of paclitaxel coated devices and the way in which device safety is ascertained, with ongoing reverberations throughout the industry and field.

    Article  PubMed  PubMed Central  Google Scholar 

  126. 2019 UPDATE: treatment of peripheral arterial disease with paclitaxel-coated balloons and paclitaxel-eluting stents potentially associated with increased mortality. FDA. 2019. https://www.fda.gov/medical-devices/letters-health-care-providers/august-7-2019-update-treatment-peripheral-arterial-disease-paclitaxel-coated-balloons-and-paclitaxel. Accessed 7 Aug 2020.

  127. Mehta M, Zhou Y, Paty PS, Teymouri M, Jafree K, Bakhtawar H, et al. Percutaneous common femoral artery interventions using angioplasty, atherectomy, and stenting. J Vasc Surg. 2016;64(2):369–79. https://doi.org/10.1016/j.jvs.2016.03.418.

    Article  PubMed  Google Scholar 

  128. Guo J, Guo L, Tong Z, Gao X, Wang Z, Gu Y. Directional atherectomy is associated with better long-term efficiency compared with angioplasty for common femoral artery occlusive disease in Rutherford 2-4 patients. Ann Vasc Surg. 2018;51:65–71. https://doi.org/10.1016/j.avsg.2017.12.004.

    Article  PubMed  Google Scholar 

  129. Imran HM, Hyder ON, Soukas PA. Efficacy and safety of adjunctive drug-coated balloon therapy in endovascular treatment of common femoral artery disease. Cardiovasc Revasc Med: including molecular interventions. 2019;20(3):210–4. https://doi.org/10.1016/j.carrev.2018.06.018.

    Article  Google Scholar 

  130. Stavroulakis K, Schwindt A, Torsello G, Stachmann A, Hericks C, Bosiers MJ, et al. Directional atherectomy with antirestenotic therapy vs drug-coated balloon angioplasty alone for isolated popliteal artery lesions. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2017;24(2):181–8. https://doi.org/10.1177/1526602816683933.

    Article  Google Scholar 

  131. Hehrlein C, Schorch B, Haberstroh J, Bode C, Mey L, Schwarzbach H, et al. Bioresorbable zinc stent with ultra-thin center struts attenuates stent jail in porcine femoral artery bifurcations. Minim Invasive Ther Allied Technol. 2020:1–8. https://doi.org/10.1080/13645706.2020.1770797.

  132. Varcoe RL, Schouten O, Thomas SD, Lennox AF. Initial experience with the absorb bioresorbable vascular scaffold below the knee: six-month clinical and imaging outcomes. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2015;22(2):226–32. https://doi.org/10.1177/1526602815575256.

    Article  Google Scholar 

  133. Kum S, Ipema J, Chun-Yin DH, Lim DM, Tan YK, Varcoe RL, et al. Early and midterm experience with the absorb everolimus-eluting bioresorbable vascular scaffold in Asian patients with chronic limb-threatening ischemia: one-year clinical and imaging outcomes from the DISAPEAR Registry. J Endovasc Ther : an official journal of the International Society of Endovascular Specialists. 2020;27(4):616–22. 1526602820922524. https://doi.org/10.1177/1526602820922524.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh V. Swaminathan.

Ethics declarations

Conflict of Interest

E. Hope Weissler reports no conflict of interest.

Antonio Gutierrez reports personal fees from Janssen Pharmaceuticals and Amgen.

Manesh R. Patel reports grants from NHLBI and AstraZeneca; and grants and personal fees from Heartflow, Bayer, and Janssen.

Rajesh V. Swaminathan reports grants and non-financial support from ACIST Medical, personal fees and non-financial support from Medtronic, and grants from Cardiovascular Systems, Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Peripheral Vascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weissler, E.H., Gutierrez, J.A., Patel, M.R. et al. Successful Peripheral Vascular Intervention in Patients with High-risk Comorbidities or Lesion Characteristics. Curr Cardiol Rep 23, 32 (2021). https://doi.org/10.1007/s11886-021-01465-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01465-8

Keywords

Navigation