Skip to main content

Advertisement

Log in

Pulmonary Hypertension Due to Left Heart Disease: an Update

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pulmonary hypertension (PH) frequently complicates heart failure and portends a worse prognosis. This review will summarize and discuss recent updates in the classification and management of patients with PH due to left heart disease.

Recent Findings

Careful hemodynamic assessment is critical to the classification of patients with PH and heart failure. Two hemodynamic subgroups of PH in heart failure patients have been described: isolated post-capillary pulmonary hypertension and combined post- and precapillary pulmonary hypertension. The cornerstone in management of PH due to left heart disease is the treatment of the underlying left heart pathology; however, ongoing trials have been designed to test pulmonary vasodilators in this cohort.

Summary

PH-specific therapies have not demonstrated a benefit in patients with pulmonary hypertension due to left heart disease. Understanding the distinct pathobiology of each hemodynamic subgroup may lead to the development of useful biomarkers and effective targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Fang JC, DeMarco T, Givertz MM, Borlaug BA, Lewis GD, Rame JE, et al. World Health Organization Pulmonary Hypertension group 2: pulmonary hypertension due to left heart disease in the adult--a summary statement from the Pulmonary Hypertension Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2012;31(9):913–33 This summary statement from the ISHLT provides current practice recommendations for PH-LHD.

    Article  PubMed  Google Scholar 

  2. Damy T, Goode KM, Kallvikbacka-Bennett A, Lewinter C, Hobkirk J, Nikitin NP, et al. Determinants and prognostic value of pulmonary arterial pressure in patients with chronic heart failure. Eur Heart J. 2010;31(18):2280–90.

    Article  CAS  PubMed  Google Scholar 

  3. Bursi F, McNallan SM, Redfield MM, Nkomo VT, Lam CS, Weston SA, et al. Pulmonary pressures and death in heart failure: a community study. J Am Coll Cardiol. 2012;59(3):222–31.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53(13):1119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37(1):183–8.

    Article  CAS  PubMed  Google Scholar 

  6. Melenovsky V, Hwang SJ, Lin G, Redfield MM, Borlaug BA. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J. 2014;35(48):3452–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mohammed SF, Hussain I, AbouEzzeddine OF, Takahama H, Kwon SH, Forfia P, et al. Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation. 2014;130(25):2310–20.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Farber HW, Foreman AJ, Miller DP, McGoon MD. REVEAL Registry: correlation of right heart catheterization and echocardiography in patients with pulmonary arterial hypertension. Congest Heart Fail. 2011;17(2):56–64.

    Article  PubMed  Google Scholar 

  9. Testani JM, St John Sutton MG, Wiegers SE, Khera AV, Shannon RP, Kirkpatrick JN. Accuracy of noninvasively determined pulmonary artery systolic pressure. Am J Cardiol. 2010;105(8):1192–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: pulmonary hypertension and heart failure. JACC Heart Fail. 2013;1(4):290–9 This study showed the important prognostic implications of pulmonary hypertension in patients with heart failure with reduced ejection fraction.

    Article  PubMed  Google Scholar 

  11. Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2015;37(1):67–119 This statement from the ESC/ERS provides practice guidelines for pulmonary hypertension.

    Article  PubMed  Google Scholar 

  12. Melby SJ, Moon MR, Lindman BR, Bailey MS, Hill LL, Damiano RJ Jr. Impact of pulmonary hypertension on outcomes after aortic valve replacement for aortic valve stenosis. J Thorac Cardiovasc Surg. 2011;141(6):1424–30.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kovacs G, Berghold A, Scheidl S, Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009;34(4):888–94.

    Article  CAS  PubMed  Google Scholar 

  14. Assad TR, Maron BA, Robbins IM, Xu M, Huang S, Harrell FE, et al. Prognostic effect and longitudinal hemodynamic assessment of borderline pulmonary hypertension. JAMA Cardiol. 2017;2(12):1361–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. De Marco T, Barnett CF, Fang JC, Horn EM, Tedford R. Pulmonary hypertension in left heart disease – systolic, diastolic, valvular. In: Kirklin JK, editor. ISHLT Monograph Series, Volume 9: Pulmonary Hypertension and Right Heart Failure. Birmingham: UAB Printing; 2015. p. 194.

    Google Scholar 

  16. Galie N, McLaughlin VV, Rubin LJ, Simonneau G. An overview of the 6th World Symposium on Pulmonary Hypertension. Eur Respir J. 2019; 53(1): 1802148 This statement outlines the newest WSPH task force recommendations in pulmonary hypertension.

    Article  PubMed  Google Scholar 

  17. Vachiéry J-L, Adir Y, Barberà JA, Champion H, Coghlan JG, Cottin V, et al. Pulmonary hypertension due to left heart diseases. Journal of the American College of Cardiology. 2013;62(25 Suppl):100 This review introduces and describes the two phenotypes of PH-LHD based on the 5th WSPH recommendations.

    Article  Google Scholar 

  18. Deaño RC, Glassner-Kolmin C, Rubenfire M, Frost A, Visovatti S, McLaughlin VV, et al. Referral of patients with pulmonary hypertension diagnoses to tertiary pulmonary hypertension centers: the multicenter RePHerral study. JAMA Intern Med. 2013;173(10):887–93.

    Article  PubMed  Google Scholar 

  19. Halpern SD, Taichman DB. Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest. 2009;136(1):37–43.

    Article  PubMed  Google Scholar 

  20. Rosenkranz S, Gibbs JSR, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiéry J-L. Left ventricular heart failure and pulmonary hypertension. Eur Heart J. 2016;37(12):942–54.

    Article  PubMed  Google Scholar 

  21. Tedford RJ, Hassoun PM, Mathai SC, Girgis RE, Russell SD, Thiemann DR, et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012;125(2):289–97.

    Article  PubMed  Google Scholar 

  22. Assad TR, Hemnes AR, Larkin EK, Glazer AM, Xu M, Wells QS, et al. Clinical and biological insights into combined post- and pre-capillary pulmonary hypertension. J Am Coll Cardiol. 2016;68(23):2525–36.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Naeije R, Gerges M, Vachiery J-L, Caravita S, Gerges C, Lang IM. Hemodynamic phenotyping of pulmonary hypertension in left heart failure. Circ Heart Fail. 2017;10(9):e004082.

  24. Meoli DF, Su YR, Brittain EL, Robbins IM, Hemnes AR, Monahan K. The transpulmonary ratio of endothelin 1 is elevated in patients with preserved left ventricular ejection fraction and combined pre- and post-capillary pulmonary hypertension. Pulm Circ. 2018;8(1):2045893217745019.

    Article  PubMed  CAS  Google Scholar 

  25. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30(20):2493–537.

    Article  PubMed  Google Scholar 

  26. Gerges C, Gerges M, Lang MB, Zhang Y, Jakowitsch J, Probst P, et al. Diastolic pulmonary vascular pressure gradient: a predictor of prognosis in “out-of-proportion” pulmonary hypertension. Chest. 2013;143(3):758–66.

    Article  PubMed  Google Scholar 

  27. Brunner NW, Yue SF, Stub D, Ye J, Cheung A, Leipsic J, et al. The prognostic importance of the diastolic pulmonary gradient, transpulmonary gradient, and pulmonary vascular resistance in patients undergoing transcatheter aortic valve replacement. Catheter Cardiovasc Interv. 2017;90(7):1185–91.

    Article  PubMed  Google Scholar 

  28. Dragu R, Rispler S, Habib M, Sholy H, Hammerman H, Galie N, et al. Pulmonary arterial capacitance in patients with heart failure and reactive pulmonary hypertension. Eur J Heart Fail. 2015;17(1):74–80.

    Article  PubMed  Google Scholar 

  29. Tedford RJ, Beaty CA, Mathai SC, Kolb TM, Damico R, Hassoun PM, et al. Prognostic value of the pre-transplant diastolic pulmonary artery pressure-to-pulmonary capillary wedge pressure gradient in cardiac transplant recipients with pulmonary hypertension. J Heart Lung Transplant. 2014;33(3):289–97.

    Article  PubMed  Google Scholar 

  30. Tampakakis E, Leary PJ, Selby VN, De Marco T, Cappola TP, Felker GM, et al. The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail. 2015;3(1):9–16.

    Article  PubMed  Google Scholar 

  31. Cappola TP, Felker GM, Kao WH, Hare JM, Baughman KL, Kasper EK. Pulmonary hypertension and risk of death in cardiomyopathy: patients with myocarditis are at higher risk. Circulation. 2002;105(14):1663–8.

    Article  PubMed  Google Scholar 

  32. Dupont M, Mullens W, Skouri HN, Abrahams Z, Wu Y, Taylor DO, et al. Prognostic role of pulmonary arterial capacitance in advanced heart failure. Circ Heart Fail. 2012;5(6):778–85.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pellegrini P, Rossi A, Pasotti M, Raineri C, Cicoira M, Bonapace S, et al. Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure. Chest. 2014;145(5):1064–70.

    Article  PubMed  Google Scholar 

  34. Vachiery JL, Tedford RJ, Rosenkranz S, Palazzini M, Lang I, Guazzi M, et al. Pulmonary hypertension due to left heart disease. Eur Respir J. 2019; 53(1): 1801897. This document provides the most recent WSPH recommendations on the evaluation and management of PH-LHD.

    Article  PubMed  CAS  Google Scholar 

  35. Wright SP, Moayedi Y, Foroutan F, Agarwal S, Paradero G, Alba AC, et al. Diastolic pressure difference to classify pulmonary hypertension in the assessment of heart transplant candidates. Circ Heart Fail. 2017;10: e004077.

  36. Houston BA, Tedford RJ. Is pulmonary artery wedge pressure a Fib in A-Fib? Eur J Heart Fail. 2017;19(11):1491–4.

    Article  PubMed  Google Scholar 

  37. Herve P, Lau EM, Sitbon O, Savale L, Montani D, Godinas L, et al. Criteria for diagnosis of exercise pulmonary hypertension. Eur Respir J. 2015;46(3):728–37.

    Article  PubMed  Google Scholar 

  38. Eisman AS, Shah RV, Dhakal BP, Pappagianopoulos PP, Wooster L, Bailey C, et al. Pulmonary capillary wedge pressure patterns during exercise predict exercise capacity and incident heart failure. Circ Heart Fail. 2018;11(5):e004750.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Andersen MJ, Olson TP, Melenovsky V, Kane GC, Borlaug BA. Differential hemodynamic effects of exercise and volume expansion in people with and without heart failure. Circ Heart Fail. 2015;8(1):41–8.

    Article  PubMed  Google Scholar 

  40. Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28(20):2539–50.

    Article  PubMed  Google Scholar 

  41. Arkles JS, Opotowsky AR, Ojeda J, Rogers F, Liu T, Prassana V, et al. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med. 2011;183(2):268–76.

    Article  PubMed  Google Scholar 

  42. D'Alto M, Romeo E, Argiento P, Pavelescu A, Melot C, D'Andrea A, et al. Echocardiographic prediction of pre- versus postcapillary pulmonary hypertension. J Am Soc Echocardiogr. 2015;28(1):108–15.

    Article  PubMed  Google Scholar 

  43. Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation. 2018;138(9):861–70.

    Article  PubMed  Google Scholar 

  44. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–79.

    Article  PubMed  Google Scholar 

  45. Shah SJ, Katz DH, Deo RC. Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail Clin. 2014;10(3):407–18.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Broch K, Ueland T, Nymo SH, Kjekshus J, Hulthe J, Muntendam P, et al. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. Eur J Heart Fail. 2012;14(3):268–77.

    Article  CAS  PubMed  Google Scholar 

  47. Gaggin HK, Szymonifka J, Bhardwaj A, Belcher A, De Berardinis B, Motiwala S, et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly-sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2014;2(1):65–72.

    Article  PubMed  Google Scholar 

  48. Abou Ezzeddine OF, McKie PM, Dunlay SM, Stevens SR, Felker GM, Borlaug BA, et al. Suppression of tumorigenicity 2 in heart failure with preserved ejection fraction. J Am Heart Assoc. 2017;6(2): e004382.

  49. Ojji DB, Lecour S, Adeyemi OM, Sliwa K. Soluble ST2 correlates with some indicators of right ventricular function in hypertensive heart failure. Vasc Health Risk Manag. 2017;13:311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB. Cardiovascular metabolomics. Circ Res. 2018;122(9):1238–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lewis GD, Ngo D, Hemnes AR, Farrell L, Domos C, Pappagianopoulos PP, et al. Metabolic profiling of right ventricular-pulmonary vascular function reveals circulating biomarkers of pulmonary hypertension. J Am Coll Cardiol. 2016;67(2):174–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang H, Anstrom K, Ilkayeva O, Muehlbauer MJ, Bain JR, McNulty S, et al. Sildenafil treatment in heart failure with preserved ejection fraction: targeted metabolomic profiling in the RELAX trial. JAMA Cardiol. 2017;2(8):896–901.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Luo N, Craig D, Ilkayeva O, Muehlbauer M, Kraus WE, Newgard CB, et al. Plasma acylcarnitines are associated with pulmonary hypertension. Pulmonary Circulation. 2017;7(1):211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383–92.

    Article  CAS  PubMed  Google Scholar 

  55. Pfeffer MA, Claggett B, Assmann SF, Boineau R, Anand IS, Clausell N, et al. Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial. Circulation. 2015;131(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  56. Magne J, Pibarot P, Sengupta PP, Donal E, Rosenhek R, Lancellotti P. Pulmonary hypertension in valvular disease: a comprehensive review on pathophysiology to therapy from the HAVEC Group. J Am Coll Cardiol Img. 2015;8(1):83–99.

    Article  Google Scholar 

  57. Braunwald E, Braunwald NS, Ross J Jr, Morrow AG. Effects of mitral-valve replacement on the pulmonary vascular dynamics of patients with pulmonary hypertension. N Engl J Med. 1965;273:509–14.

    Article  CAS  PubMed  Google Scholar 

  58. Murashita T, Okada Y, Kanemitsu H, Fukunaga N, Konishi Y, Nakamura K, et al. The impact of preoperative and postoperative pulmonary hypertension on long-term surgical outcome after mitral valve repair for degenerative mitral regurgitation. Annals of Thoracic and Cardiovascular Surgery. 2015;21(1):53–8.

    Article  PubMed  Google Scholar 

  59. Stone GW, Lindenfeld J, Abraham WT, Kar S, Lim DS, Mishell JM, et al. Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med. 2018;13;379(24):2307–2318.

    Article  PubMed  Google Scholar 

  60. Obadia JF, Messika-Zeitoun D, Leurent G, Iung B, Bonnet G, Piriou N, et al. Percutaneous repair or medical treatment for secondary mitral regurgitation. N Engl J Med. 2018;379:2297–306.

    Article  PubMed  Google Scholar 

  61. D'Ascenzo F, Conrotto F, Salizzoni S, Rossi ML, Nijhoff F, Gasparetto V, et al. Incidence, predictors, and impact on prognosis of systolic pulmonary artery pressure and its improvement after transcatheter aortic valve implantation: a multicenter registry. The Journal of Invasive Cardiology. 2015;27(2):114–9.

    PubMed  Google Scholar 

  62. Bishu K, Suri RM, Nkomo VT, Kane GC, Greason KL, Reeder GS, et al. Prognostic impact of pulmonary artery systolic pressure in patients undergoing transcatheter aortic valve replacement for aortic stenosis. Am J Cardiol. 2014;114(10):1562–7.

    Article  PubMed  Google Scholar 

  63. Bermejo J, Yotti R, García-Orta R, Sánchez-Fernández PL, Castaño M, Segovia-Cubero J, et al. Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial. Eur Heart J. 2018;39(15):1255–64.

    Article  CAS  PubMed  Google Scholar 

  64. Fayyaz AU, Edwards WD, Maleszewski JJ, Konik EA, DuBrock HM, Borlaug BA, et al. Global pulmonary vascular remodeling in pulmonary hypertension associated with heart failure and preserved or reduced ejection fraction. Circulation. 2018;137(17):1796–810.

    Article  PubMed  Google Scholar 

  65. Califf RM, Adams KF, McKenna WJ, Gheorghiade M, Uretsky BF, McNulty SE, et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: the Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1997;134(1):44–54.

    Article  CAS  PubMed  Google Scholar 

  66. Packer M, McMurray JJV, Krum H, Kiowski W, Massie BM, Caspi A, et al. Long-term effect of endothelin receptor antagonism with bosentan on the morbidity and mortality of patients with severe chronic heart failure: primary results of the ENABLE trials. JACC Heart Failure. 2017;5(5):317–26.

    Article  PubMed  Google Scholar 

  67. Cooper TJ, Guazzi M, Al-Mohammad A, Amir O, Bengal T, Cleland JG, et al. Sildenafil in Heart failure (SilHF). An investigator-initiated multinational randomized controlled clinical trial: rationale and design. Eur J Heart Fail. 2013;15(1):119–22.

    Article  CAS  PubMed  Google Scholar 

  68. Melenovsky V, Al-Hiti H, Kazdova L, Jabor A, Syrovatka P, Malek I, et al. Transpulmonary B-type natriuretic peptide uptake and cyclic guanosine monophosphate release in heart failure and pulmonary hypertension: the effects of sildenafil. J Am Coll Cardiol. 2009;54(7):595–600.

    Article  CAS  PubMed  Google Scholar 

  69. Guazzi M, Vicenzi M, Arena R, Guazzi MD. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011;124(2):164–74.

    Article  CAS  PubMed  Google Scholar 

  70. Hoendermis ES, Liu LCY, Hummel YM, van der Meer P, de Boer RA, Berger RMF, et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J. 2015;36(38):2565–73.

    Article  CAS  PubMed  Google Scholar 

  71. Hussain I, Mohammed S, Forfia P, Lewis G, Borlaug B, Gallup D, et al. Right ventricular dysfunction and pulmonary hypertension in heart failure with preserved ejection fraction: post-hoc analysis from the RELAX trial. J Am Coll Cardiol. 2015;65(10 Supplement):A814.

    Article  Google Scholar 

  72. Bonderman D, Ghio S, Felix SB, Ghofrani H-A, Michelakis E, Mitrovic V, et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation. 2013;128(5):502–11.

    Article  CAS  PubMed  Google Scholar 

  73. Gheorghiade M, Greene SJ, Butler J, Filippatos G, Lam CSP, Maggioni AP, et al. Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. JAMA. 2015;314(21):2251–62.

    Article  CAS  PubMed  Google Scholar 

  74. Pieske B, Maggioni AP, Lam CSP, Pieske-Kraigher E, Filippatos G, Butler J, et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J. 2017;38(15):1119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Armstrong PW, Roessig L, Patel MJ, Anstrom KJ, Butler J, Voors AA, et al. A multicenter, randomized, double-blind, placebo-controlled trial of the efficacy and safety of the oral soluble guanylate cyclase stimulator: the VICTORIA trial. JACC Heart Fail. 2018;6(2):96–104.

    Article  PubMed  Google Scholar 

  76. Ghio S, Crimi G, Pica S, Temporelli PL, Boffini M, Rinaldi M, et al. Persistent abnormalities in pulmonary arterial compliance after heart transplantation in patients with combined post-capillary and pre-capillary pulmonary hypertension. PloS One. 2017;12(11):e0188383 This study highlights the importance of combined pre- and post-capillary pulmonary hypertension in heart transplant recipients.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Murali S, Kormos RL, Uretsky BF, Schechter D, Reddy PS, Denys BG, et al. Preoperative pulmonary hemodynamics and early mortality after orthotopic cardiac transplantation: the Pittsburgh experience. Am Heart J. 1993;126(4):896–904.

    Article  CAS  PubMed  Google Scholar 

  78. Mehra MR, Canter CE, Hannan MM, Semigran MJ, Uber PA, Baran DA, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant. 2016;35(1):1–23.

    Article  PubMed  Google Scholar 

  79. Zimpfer D, Zrunek P, Roethy W, Czerny M, Schima H, Huber L, et al. Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. J Thorac Cardiovasc Surg. 2007;133(3):689–95.

    Article  PubMed  Google Scholar 

  80. Selim AM, Wadhwani L, Burdorf A, Raichlin E, Lowes B, Zolty R. Left ventricular assist devices in pulmonary hypertension group 2 with significantly elevated pulmonary vascular resistance: a bridge to cure. Heart Lung Circ. 2019;28(6):946–952.

    Article  PubMed  Google Scholar 

  81. Al-Kindi SG, Farhoud M, Zacharias M, Ginwalla MB, ElAmm CA, Benatti RD, et al. Left ventricular assist devices or inotropes for decreasing pulmonary vascular resistance in patients with pulmonary hypertension listed for heart transplantation. J Card Fail. 2017;23(3):209–15.

    Article  PubMed  Google Scholar 

  82. Atluri P, Fairman AS, MacArthur JW, Goldstone AB, Cohen JE, Howard JL, et al. Continuous flow left ventricular assist device implant significantly improves pulmonary hypertension, right ventricular contractility, and tricuspid valve competence. J Card Surg. 2013;28(6):770–5.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Masri SC, Tedford RJ, Colvin MM, Leary PJ, Cogswell R. Pulmonary arterial compliance improves rapidly after left ventricular assist device implantation. ASAIO J. 2017;63(2):139–43.

    Article  PubMed  Google Scholar 

  84. Imamura T, Kim G, Raikhelkar J, Sarswat N, Kalantari S, Smith B, et al. Decoupling between diastolic pulmonary arterial pressure and pulmonary arterial wedge pressure at incremental left ventricular assist device (LVAD) speeds is associated with worse prognosis after LVAD implantation. J Card Fail. 2018;24:575–82.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Al-Naamani N, Preston IR, Paulus JK, Hill NS, Roberts KE. Reply: the diastolic pressure gradient does not-and should not-predict outcomes. JACC Heart Fail. 2015;3(10):846.

    Article  PubMed  Google Scholar 

  86. Tedford RJ, Hemnes AR, Russell SD, Wittstein IS, Mahmud M, Zaiman AL, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circulation Heart Failure. 2008;1(4):213–9 This study provides evidence for using PDE-5 inhibitors in select populations with PH-LHD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hamdan R, Mansour H, Nassar P, Saab M. Prevention of right heart failure after left ventricular assist device implantation by phosphodiesterase 5 inhibitor. Artif Organs. 2014;38(11):963–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa De Marco.

Ethics declarations

Conflict of Interest

Mandar A. Aras reports no conflict of interest.

Mitchell A. Psotka reports being a consultant for Roivant, Amgen, and Cytokinetics.

Teresa De Marco reports grants from Pfizer and personal fees from Actelion Pharm, Arena Pharm, United Therapeutics, Novartis, Boston Scientific, Bellerophon, Respirix, and Gilead.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aras, M.A., Psotka, M.A. & De Marco, T. Pulmonary Hypertension Due to Left Heart Disease: an Update. Curr Cardiol Rep 21, 62 (2019). https://doi.org/10.1007/s11886-019-1149-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1149-1

Keywords

Navigation