Skip to main content

Advertisement

Log in

Emerging Advances in the Management of Cardiac Amyloidosis

  • Heart Failure (MR Mehra and E Joyce, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Amyloidosis is a disease in which proteins misfold, aggregate into fibrils, and deposit extracellularly disrupting organ architecture and function. There are two main types which affect the heart: light chain (AL) amyloidosis and transthyretin cardiac amyloidosis (ATTR). There is a misconception that cardiac amyloidosis has no effective treatment options. However, over the past decade, there has been extensive research and drug development. Outcomes are improving in AL amyloidosis with evolving chemotherapeutic regimens and novel monoclonal antibodies. In ATTR, therapies that decrease protein production, prevent dissociation, and promote clearance have the potential to slow or even halt a disease which is uniformly fatal. Selected patients may be candidates for heart and/or stem cell transplant and should be promptly referred to an experienced amyloid program. Herein, we discuss the emerging advances for the treatment of cardiac amyloidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dharmarajan K, Maurer MS. Transthyretin cardiac amyloidoses in older North Americans. J Am Geriatr Soc. 2012;60(4):765–74.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Rapezzi C, Quarta CC, Riva L, et al. Transthyretin-related amyloidoses and the heart: a clinical overview. Nat Rev Cardiol. 2010;7:398–408.

    Article  CAS  PubMed  Google Scholar 

  3. Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation. 2005;112:2047–60.

    Article  PubMed  Google Scholar 

  4. Molina OG, Judge D, Campbell W, Cahal H, Mugmon M. Transthyretin cardiac amyloidosis: an under-diagnosed cause of heart failure. J Community Hosp Intern Med Perspect. 2014;4(5):25500.

    Google Scholar 

  5. Poshusta TL, Sikkink LA, Leung N, et al. Mutations in specific structural regions of immunoglobulin light chains are associated with free light chain levels in patients with AL amyloidosis. PLoS ONE. 2009;4(4), e5169.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Leinonen H, Pohjola-Sintonen S. Cardiac amyloidosis. Therapeutic and diagnostic difficulties with reference to two different forms of the disease. Acta Med Scand. 1986;219(1):125–8.

    Article  CAS  PubMed  Google Scholar 

  7. Palladini G, Dispenzieri A, Gertz MA, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012;30:4541–9. Important trial updating the Mayo prognostic criteria for amyloidosis with serum free light chain assessment.

    Article  CAS  PubMed  Google Scholar 

  8. Palladini G, Barassi A, Klersy C, et al. The combination of high-sensitivity cardiac troponin T (hs-cTnT) at presentation and changes in N-terminal natriuretic peptide type B (NT-proBNP) after chemotherapy best predicts survival in AL amyloidosis. Blood. 2010;116(18):3426–30.

    Article  CAS  PubMed  Google Scholar 

  9. Gertz MA, Comenzo R, Falk RH, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am J Hematol. 2005;79(4):319–28. Most recent consensus document on defining organ involvement in amyloidosis.

    Article  PubMed  Google Scholar 

  10. Kyle RA, Gertz MA, Greipp PR, et al. A trial of three regimens for primary amyloidosis: colchicine alone, melphalan and prednisone, and melphalan, prednisone, and colchicine. N Engl J Med. 1997;336(17):1202–7.

    Article  CAS  PubMed  Google Scholar 

  11. Palladini G, Milani P, Foli A, et al. Oral melphalan and dexamethasone grants extended survival with minimal toxicity in AL amyloidosis: long-term results of a risk-adapted approach. Haematologica. 2014;99(4):743–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Gertz MA, Lacy MQ, Dispenzieri A, et al. Refinement in patient selection to reduce treatment-related mortality from autologous stem cell transplantation in amyloidosis. Bone Marrow Transplant. 2013;48(4):557–61.

    Article  CAS  PubMed  Google Scholar 

  13. Dispenzieri A, Kyle RA, Lacy MQ, et al. Superior survival in primary systemic amyloidosis patients undergoing peripheral blood stem cell transplantation: a case–control study. Blood. 2004;103(10):3960–3.

    Article  CAS  PubMed  Google Scholar 

  14. Sanchorawala V, Skinner M, Quillen K, et al. Long-term outcome of patients with AL amyloidosis treated with high-dose melphalan and stem-cell transplantation. Blood. 2007;110(10):3561–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kastritis E, Roussou M, Gavriatopoulou M, et al. Long-term outcomes of primary systemic light chain (AL) amyloidosis in patients treated upfront with bortezomib or lenalidomide and the importance of risk adapted strategies. Am J Hematol. 2015;90(4):E60–5.

    Article  CAS  PubMed  Google Scholar 

  16. Venner CP, Lane T, Foard D, et al. Cyclophosphamide, bortezomib, and dexamethasone therapy in AL amyloidosis is associated with high clonal response rates and prolonged progression-free survival. Blood. 2012;119(19):4387–90.

    Article  CAS  PubMed  Google Scholar 

  17. Mikhael JR, Schuster SR, Jimenez-Zepeda VH, et al. Cyclophosphamide-bortezomib-dexamethasone (CyBorD) produces rapid and complete hematologic response in patients with AL amyloidosis. Blood. 2012;119(19):4391–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zonder JA, Sanchorawala V, Snyder RM, et al (2009) Melphalan and dexamethasone plus bortezomib induces hematologic and organ responses in al-amyloidosis with tolerable neurotoxicity. Blood (ASH Annual Meeting Abstracts) 114: Abstract 746

  19. Mahmood S, Palladini G, Sanchorawala V, Wechalekar A. Update on treatment of light chain amyloidosis. Haematologica. 2014;99(2):209–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Merlini G, Wechalekar AD, Palladini G. Systemic light chain amyloidosis: an update for treating physicians. Blood. 2013;121:5124–30.

    Article  CAS  PubMed  Google Scholar 

  21. Conner R, Hosenpud JD, Norman DJ, et al. Heart transplantation for cardiac amyloidosis: successful one-year outcome despite recurrence of the disease. J Heart Transplant. 1988;7(2):165–7.

    CAS  PubMed  Google Scholar 

  22. Hosenpud JD, DeMarco T, Frazier OH, et al. Progression of systemic disease and reduced long-term survival in patients with cardiac amyloidosis undergoing heart transplantation. Follow-up results of a multicenter survey. Circulation. 1991;84(5S):III338–43.

    CAS  PubMed  Google Scholar 

  23. Dubrey SW, Burke MM, Hawkins PN, et al. Cardiac transplantation for amyloid heart disease: the United Kingdom experience. J Heart Lung Transplant. 2004;23(10):1142–53.

    Article  PubMed  Google Scholar 

  24. Kpodonu J, Massad MG, Caines A, et al. Outcome of heart transplantation in patients with amyloid cardiomyopathy. J Heart Lung Transplant. 2005;24(11):1763–5.

    Article  PubMed  Google Scholar 

  25. Lacy MQ, Dispenzieri A, Hayman SR, et al. Autologous stem cell transplant after heart transplant for light chain (AL) amyloid cardiomyopathy. J Heart Lung Transplant. 2008;27(8):823–9.

    Article  PubMed  Google Scholar 

  26. Dey BR, Chung SS, Spitzer TR, et al. Cardiac transplantation followed by dose-intensive melphalan and autologous stem-cell transplantation for light chain amyloidosis and heart failure. Transplantation. 2010;90:905–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gilstrap LG, Niehaus E, Malhotra R, et al. Predictors of survival to orthotopic heart transplant in patients with light chain amyloidosis. J Heart Lung Transplant. 2014;33(2):149–56.

    Article  PubMed Central  Google Scholar 

  28. Wall JS, Kennel SJ, Williams A, et al. AL amyloid imaging and therapy with a monoclonal antibody to a cryptic epitope on amyloid fibrils. PLoS ONE. 2012;7(12), e52686.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Dispenzieri A, Buadi F, Laumann K, et al. Activity of pomalidomide in patients with immunoglobulin light-chain amyloidosis. Blood. 2012;119(23):5397–404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zonder J, Houde C, Tuchman S, et al. A phase I trial of pomalidomide, bortezomib (Velcade), and dexamethasone (PVD) as initial treatment of AL amyloidosis and light chain deposition disease. Blood (ASH Annu Meet Abstr). 2014;124:4767.

    Google Scholar 

  31. Jacobson DR, Pastore RD, Yaghoubian R, et al. Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N Engl J Med. 1997;336(7):466–73.

    Article  CAS  PubMed  Google Scholar 

  32. Yamashita T, Hamidi AK, Yazaki M, Benson MD. A prospective evaluation of the transthyretin Ile122 allele frequency in an African-American population. Amyloid. 2005;12(2):127–30.

    Article  CAS  PubMed  Google Scholar 

  33. Buxbaum J et al. Transthyretin V122I in African Americans with congestive heart failure. J Am Coll Cardiol. 2006;47(8):1724–5.

    Article  PubMed  Google Scholar 

  34. Holmgren G, Steen L, Ekstedt J, et al. Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clin Genet. 1991;40:242–6.

    Article  CAS  PubMed  Google Scholar 

  35. Carvalho A, Rocha A, Lobato L. Liver transplantation in transthyretin amyloidosis: issues and challenges. Liver Transpl. 2015;21:282–92.

    Article  PubMed  Google Scholar 

  36. Hamour IM, Lachmann HJ, Goodman HJB, et al. Heart transplantation for homozygous familial transthyretin (TTR) V122I cardiac amyloidosis. Am J Transplant. 2008;8(5):1056–9.

    Article  CAS  PubMed  Google Scholar 

  37. Roig E, Almenar L, Gonzalez-Vilchez F, et al. Outcomes of heart transplantation for cardiac amyloidosis: subanalysis of the Spanish registry for heart transplantation. Am J Transplant. 2009;9(6):1414–9.

    Article  CAS  PubMed  Google Scholar 

  38. Ammirati E, Marziliano N, Vittori C, et al. The first Caucasian patient with p.Val122Ile mutated-transthyretin cardiac amyloidosis treated with isolated heart transplantation. Amyloid. 2012;19(2):113–7.

    Article  CAS  PubMed  Google Scholar 

  39. Thenappan T, Fedson S, Rich J, et al. Isolated heart transplantation for familial transthyretin (TTR) V122I cardiac amyloidosis. Amyloid. 2014;21(2):120–3.

    Article  CAS  PubMed  Google Scholar 

  40. Baures PW, Peterson SA, Kelly JW. Discovering transthyretin amyloid fibril inhibitors by limited screening. Bioorg Med Chem. 1998;6:1389. This article and the next two from the lab of Dr. Kelly are excellent examples of years of basic science research translating into breakthrough therapy.

    Article  CAS  PubMed  Google Scholar 

  41. Munro SL, Lim CF, Hall JG, et al. Drug competition for thyroxine binding to transthyretin (prealbumin): comparison with effects on thyroxine binding globulin. J Clin Endocrinol Metab. 1989;68:1141–7.

    Article  CAS  PubMed  Google Scholar 

  42. Klabunde T, Petrassi HM, Oza VB, Raman P, Kelly JW, Sacchettini JC. Rational design of potent human transthyretin amyloid disease inhibitors. Nat Struct Biol. 2000;7:312–21.

    Article  CAS  PubMed  Google Scholar 

  43. Stone CA, Van Arman CG, Lotti VJ, et al. Pharmacology and toxicology of diflunisal. Br J Clin Pharmacol. 1977;4(Suppl1):19S–29.

  44. Berk JL, Suhr OB, Obici L, et al. Diflunisal trial C. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA. 2013;310:2658–67. This is the only randomized placebo-controlled trial in transthyretin amyloidosis that has met its primary endpoint. This landmark clinical trial will likely lead to the approval of diflunisal for the indication of FAP.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Bulawa CE, Connelly S, Devit M, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci U S A. 2012;109:9629–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Giampaolo M, Plante-Bordeneuve P, Judge DJ, et al. Effect of tafamidids on transthyretin stabilization and clinical outcomes in patients with Non-Val30MET transthyretin amyloidosis. J Cardiovasc Trans Res. 2013;6:1011–20.

    Article  Google Scholar 

  47. Coelho T, Maia LF, da Silva AM, et al. Tafamidis for transthyretin familial amyloid polyneuropathy. Neurology. 2012;79(8):785–92. This was the first randomized placebo-controlled trial in transthyretin amyloidosis. Although the primary endpoint was not met, the results led to the approval of tafamidis in Europe.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Damy T, Judge DP, Kristen AV, et al. Cardiac findings and events observed in an open-label clinical trial of tafamidis in patients with non-Val30Met and non Val122Ile hereditary transthyretin amyloidosis. J Cardiovasc Trans Res. 2015;88:117–27.

    Article  Google Scholar 

  49. Maurer M, Grogan D, Judge D, et al. Tafamidis in transthyretin amyloid cardiomyopathy effects on transthyretin stabilization and clinical outcomes. Circ Heart Fail. 2015;8:519–26.

    Article  PubMed  Google Scholar 

  50. Ferreira N, Cardoso I, Domingues MR, et al. Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett. 2009;583:3569–76.

  51. Kristen AV, Lehrke S, Buss S, et al. Green tea halts progression of cardiac transthyretin amyloidosis: an observational report. Clin Res Cardiol. 2012;101:805–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Siepen FA, Buss SJ, Andre F, et al. Extracellular remodeling in patients with wild-type amyloidosis consuming epigallocatechin-3-gallate: preliminary results of t1 mapping by cardiac magnetic resonance imaging in a small single center study. Clin Res Cardiol. 2015;104(8):640–7.

    Article  Google Scholar 

  53. Mereles D, Buss SJ, Hardt SE, et al. Effects of the main green tea polyphenol epigallocatechin-3-gallate on cardiac involvement in patients with al amyloidosis. Clin Res Cardiol. 2010;99:483–90.

    Article  CAS  PubMed  Google Scholar 

  54. Davidson BL, McCray PB. Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011;12:329–40.

    Article  CAS  PubMed  Google Scholar 

  55. Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol. 2010;50:259–93.

    Article  CAS  PubMed  Google Scholar 

  56. Coelho T, Adams D, Silva A, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369:819–29. This is a major breakthrough and publication in the field. A New England Journal of Medicine publication has brought transthyretin amyloidosis into greater awareness amongst physicians.

    Article  CAS  PubMed  Google Scholar 

  57. Coelho T, Suhr O, Coneicau I, et al. Phase 2 open-label extension study of patisiran, an investigational RNAi therapeutic for the treatment of familial amyloid polyneuropathy. Neurology. 2015;84(14):S9.003.

    Google Scholar 

  58. Gagnon KT, Watts JK, On behalf of the Board of the Oligonucleotide Therapeutics Society. 10th Annual Meeting of the Oligonucleotide Therapeutics Society: session summary. Nucleic Acid Ther. 2014;24(6):428–34.

    Article  CAS  Google Scholar 

  59. Ackerman EJ, Guo S, Booten S, et al. Clinical development of antisense therapy for the treatment of transthryetin-associated polyneuropathy. Amyloid. 2012;19(S1):43–4.

    Article  Google Scholar 

  60. Tagliavini F, Forloni G, Colombo L, Salmona M, et al. Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro. J Mol Biol. 2000;300:1309–22.

    Article  CAS  PubMed  Google Scholar 

  61. Cardoso I, Saraiva MJ. Doxycycline disrupts transthyretin amyloid: evidence from studies in a FAP transgenic mice model. FASEB J. 2006;20:234–9.

    Article  CAS  PubMed  Google Scholar 

  62. Ward JE, Ren R, Toraldo G, et al. Doxycycline reduces fibril formation in a transgenic mouse model of AL amyloidosis. Blood. 2011;118:6610–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Rodrigues CM, Sola S, Brito MA, et al. Amyloid beta-peptide disrupts mitochondrial membrane lipid and protein structure: protective role of tauroursodeoxycholate. Biochem Biophys Res Commun. 2001;281:468–74.

    Article  CAS  PubMed  Google Scholar 

  64. Sola S, Castro RE, Laires PA, et al. Tauroursodeoxycholic acid prevents amyloid beta peptide-induced neuronal death via a phosphatidylinositol 3-kinase-dependent signaling pathway. Mol Med. 2003;9:226–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Macedo B, Batista AR, Ferreira N, et al. Anti-apoptotic treatment reduces transthyretin deposition in a transgenic mouse model of familial amyloidotic polyneuropathy. Biochim Biophys Acta. 1782;2008:517–22.

    Google Scholar 

  66. Cardoso I, Martins D, Ribeiro T, et al. Synergy of combined doxycycline/TUDCA treatment in lowering transthyretin deposition and associated biomarkers: studies in FAP mouse models. J Transl Med. 2010;8:74.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Obici L, Cortese A, Lozza A, et al. Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study. Amyloid. 2012;19(S1):34–6.

    Article  CAS  PubMed  Google Scholar 

  68. Bodin K, Ellmerich S, Kahan MC, et al. Antibodies to human serum amyloid P component eliminate visceral amyloid deposits. Nature. 2010;468:93–7. Landmark trial in Nature demonstrating the first pharmaceutical able to directly target amyloid deposits for enhanced clearance.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Michael N. Vranian, Brett W. Sperry, Jason Valent, and Mazen Hanna declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen Hanna.

Additional information

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vranian, M.N., Sperry, B.W., Valent, J. et al. Emerging Advances in the Management of Cardiac Amyloidosis. Curr Cardiol Rep 17, 100 (2015). https://doi.org/10.1007/s11886-015-0653-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0653-1

Keywords

Navigation