Skip to main content

Advertisement

Log in

Challenges of Cardiac Image Analysis in Large-Scale Population-Based Studies

  • Cardiac PET, CT, and MRI (SE Petersen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Large-scale population-based imaging studies of preclinical and clinical heart disease are becoming possible due to the advent of standardized robust non-invasive imaging methods and infrastructure for big data analysis. This gives an exciting opportunity to gain new information about the development and progression of heart disease across population groups. However, the large amount of image data and prohibitive time required for image analysis present challenges for obtaining useful derived data from the images. Automated analysis tools for cardiac image analysis are only now becoming available. This paper reviews the challenges and possible solutions to the analysis of big imaging data in population studies. We also highlight the potential of recent large epidemiological studies using cardiac imaging to discover new knowledge on heart health and well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2197–223.

    Article  PubMed  Google Scholar 

  2. Dawber TR, Meadors GF, Moore Jr FE. Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health Nation's Health. 1951;41:279–81.

    Article  CAS  Google Scholar 

  3. Rosamond WD, Chambless LE, Folsom AR. Survival trends, coronary event rates, and the MONICA project. Monitoring trends and determinants in cardiovascular disease. Lancet. 1999;354:864–5.

    Article  CAS  PubMed  Google Scholar 

  4. Rosengren A, Hawken S, Ounpuu S, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:953–62.

    Article  PubMed  Google Scholar 

  5. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes 3rd J. Factors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham Study. Ann Intern Med. 1961;55:33–50.

    Article  CAS  PubMed  Google Scholar 

  6. Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;11:276–89.

    Article  PubMed  Google Scholar 

  7. Petersen SE, Matthews PM, Bamberg F et al. Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank—rationale, challenges and approaches. J Cardiovasc Magn Reson 2013;15:46. Summarizes the rationale for CMR in large scale population studies

  8. Buechel EV, Kaiser T, Jackson C, Schmitz A, Kellenberger CJ. Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2009;11:19.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J. 2004;147:218–23.

    Article  PubMed  Google Scholar 

  10. Mooij CF, de Wit CJ, Graham DA, Powell AJ, Geva T. Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles. J Magn Reson Imaging. 2008;28:67–73.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Young AA, Prince JL. Cardiovascular magnetic resonance: deeper insights through bioengineering. Annu Rev Biomed Eng. 2013;15:433–61.

    Article  CAS  PubMed  Google Scholar 

  12. Pitcher A, Ashby D, Elliott P, Petersen SE. Cardiovascular MRI in clinical trials: expanded applications through novel surrogate endpoints. Heart. 2011;97:1286–92.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hinojar R, Botnar R, Kaski JC, Prasad S, Nagel E, Puntmann VO. Individualized cardiovascular risk assessment by cardiovascular magnetic resonance. Futur Cardiol. 2014;10:273–89.

    Article  CAS  Google Scholar 

  14. Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol. 2011;8:184–7.

    Article  PubMed  Google Scholar 

  15. Bild DE, Bluemke DA, Burke GL, et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol. 2002;156:871–81.

    Article  PubMed  Google Scholar 

  16. Bild DE, McClelland R, Kaufman JD, et al. Ten-year trends in coronary calcification in individuals without clinical cardiovascular disease in the multi-ethnic study of atherosclerosis. PLoS One. 2014;9:e94916.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Bluemke DA, Kronmal RA, Lima JA, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol. 2008;52:2148–55.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Harman J, Walker ER, Charbonneau V, Akylbekova EL, Nelson C, Wyatt SB. Treatment of hypertension among African Americans: the Jackson Heart Study. J Clin Hypertens (Greenwich). 2013;15:367–74.

    Article  CAS  Google Scholar 

  19. Taylor Jr HA. The Jackson Heart Study: an overview. Ethn Dis. 2005;15:S6. 1-3.

    Google Scholar 

  20. Clark CR, Ommerborn MJ, Hickson DA, et al. Neighborhood disadvantage, neighborhood safety and cardiometabolic risk factors in African Americans: biosocial associations in the Jackson Heart study. PLoS One. 2013;8:e63254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Carr JJ. The revolution in risk assessment and disease detection made possible with non-invasive imaging: implications for population science. Ethn Dis. 2013;22:S1–24. 7.

    Google Scholar 

  22. Borugian MJ, Robson P, Fortier I, et al. The Canadian Partnership for Tomorrow Project: building a pan-Canadian research platform for disease prevention. CMAJ: Can Med Assoc J = J l'Assoc Med Can. 2010;182:1197–201.

    Article  Google Scholar 

  23. Schelbert EB, Cao JJ, Sigurdsson S, et al. Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA: J Am Med Assoc. 2012;308:890–6.

    Article  CAS  Google Scholar 

  24. Wolf PA, D'Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. Stroke; J Cerebral Circ. 1991;22:312–8.

    Article  CAS  Google Scholar 

  25. Chuang ML, Gona P, Hautvast GL, et al. CMR reference values for left ventricular volumes, mass, and ejection fraction using computer-aided analysis: the Framingham Heart Study. J Magn Reson Imaging. 2014;39:895–900.

    Article  PubMed  Google Scholar 

  26. Drazner MH, Dries DL, Peshock RM, et al. Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas Heart Study. Hypertension. 2005;46:124–9.

    Article  CAS  PubMed  Google Scholar 

  27. Bruder O, Wagner A, Lombardi M, et al. European Cardiovascular Magnetic Resonance (EuroCMR) registry—multi national results from 57 centers in 15 countries. J Cardiovasc Magn Reson. 2013;15:9.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Flanders AE. Medical image and data sharing: are we there yet? Radiographics. 2009;29:1247–51.

    Article  PubMed  Google Scholar 

  29. Fonseca CG, Backhaus M, Bluemke DA, et al. The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics. 2011;27:2288–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Medrano-Gracia P, Cowan BR, Bluemke DA, et al. Atlas-based analysis of cardiac shape and function: correction of regional shape bias due to imaging protocol for population studies. J Cardiovasc Magn Reson. 2013;15:80.

    Article  PubMed Central  PubMed  Google Scholar 

  31. http://www.scmr.org/Research/cap-dicom-transfer.html Society of Cardiovascular Magnetic Resonance. 2012.

  32. Medrano-Gracia P, Cowan BR, Ambale-Venkatesh B, et al. Left ventricular shape variation in asymptomatic populations: the Multi-Ethnic Study of Atherosclerosis. J Cardiovasc Magn Reson. 2014;16:56. This study provides the first large scale description of heart shape variation in the asyptomatic population.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Petitjean C, Dacher JN. A review of segmentation methods in short axis cardiac MR images. Med Image Anal. 2011;15:169–84.

    Article  PubMed  Google Scholar 

  34. Jolly MP, Guetter C, Lu X, Xue H, Guehring J. Automatic segmentation of the myocardium in cine MR images using deformable registration. In: Camara O, Mansi T, Pop M, Rhode K, Sermesant M, Young AA, editors. Statistical atlases and computational models of the heart imaging and modelling challenges: Springer, 2013:98-108.

  35. Feng C, Li C, Zhao D, Davatzikos C, Litt H. Segmentation of the left ventricle using distance regularized two-layer level set approach. Med Image Comput Comput Assist Interv. 2013;16:477–84.

    PubMed  Google Scholar 

  36. Radau P, Lu Y, Connelly K, Paul G, Dick AJ, Wright GA. Evaluation framework for algorithms segmenting short axis cardiac MRI. MIDAS J. 2009;49.

  37. Suinesiaputra A, Cowan BR, Al-Agamy AO, et al. A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images. Med Image Anal. 2014;18:50–62.

    Article  PubMed  Google Scholar 

  38. Sengupta PP, Pedrizzetti G, Kilner PJ, et al. Emerging trends in CV flow visualization. JACC Cardiovasc Imaging. 2012;5:305–16.

    Article  PubMed  Google Scholar 

  39. Markl M, Wallis W, Brendecke S, Simon J, Frydrychowicz A, Harloff A. Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI. Magn Reson Med. 2010;63:1575–82.

    Article  PubMed  Google Scholar 

  40. Goel A, McColl R, King KS, Whittemore A, Peshock RM. Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: validation and application in a large population based study. J Magn Reson Imaging. 2014;40:221–8.

    Article  PubMed  Google Scholar 

  41. Camara O, Mansi T, Pop M, Rhode K, Sermesant M, Young AA. Statistical atlases and computational models of the heart: imaging and modelling challenges 2013, 2014

  42. Camara O, Mansi T, Pop M, Rhode K, Sermesant M, Young AA. Statistical atlases and computational models of the heart. Imaging and modelling challenges 2012. Berlin: Springer; 2013.

    Book  Google Scholar 

  43. Jerosch-Herold M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:57.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Pack NA, DiBella EV. Comparison of myocardial perfusion estimates from dynamic contrast-enhanced magnetic resonance imaging with four quantitative analysis methods. Magn Reson Med. 2010;64:125–37.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE. A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging. 2012;5:154–66.

    Article  PubMed Central  PubMed  Google Scholar 

  46. https://www.cardiacatlas.org/web/stacom2014/moco-introduction The STACOM 2014 perfusion motion correction challenge. 2014

  47. Lu X, Georgescu B, Jolly MP, et al. Cardiac anchoring in MRI through context modeling. Med Image Comput Comput Assist Interv. 2010;13:383–90.

    PubMed  Google Scholar 

  48. Mahapatra D. Automatic cardiac segmentation using semantic information from random forests. Journal of digital imaging 2014.

  49. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992–2002.

    Article  CAS  PubMed  Google Scholar 

  50. Karim R, Housden RJ, Balasubramaniam M, et al. Evaluation of current algorithms for segmentation of scar tissue from late gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge. J Cardiovasc Magn Reson. 2013;15:105.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization. Radiology. 1989;171:841–5.

    Article  CAS  PubMed  Google Scholar 

  52. Ambale-Venkatesh B, Armstrong AC, Liu CY, et al. Diastolic function assessed from tagged MRI predicts heart failure and atrial fibrillation over an 8-year follow-up period: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging. 2014;15:442–9.

    Article  PubMed  Google Scholar 

  53. Osman NF, Kerwin WS, McVeigh ER, Prince JL. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med. 1999;42:1048–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Augustine D, Lewandowski AJ, Lazdam M, et al. Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J Cardiovasc Magn Reson. 2013;15:8.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Helle-Valle T, Crosby J, Edvardsen T, et al. New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation. 2005;112:3149–56.

    Article  PubMed  Google Scholar 

  56. Tobon-Gomez C, De Craene M, McLeod K, et al. Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Med Image Anal. 2013;17:632–48.

    Article  CAS  PubMed  Google Scholar 

  57. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52:141–6.

    Article  PubMed  Google Scholar 

  58. Puntmann VO, Ucar EA, Baydes RH et al. Aortic stiffness and interstitial myocardial fibrosis by native T1 are independently associated with left ventricular remodeling in patients with dilated cardiomyopathy. Hypertension 2014.

  59. Ugander M, Oki AJ, Hsu LY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J. 2012;33:1268–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson. 2012;14:63.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The Cardiac Atlas project was supported by Award Number R01HL087773 from the National Heart, Lung, and Blood Institute, NIH.

Compliance with Ethics Guidelines

Conflict of Interest

Pau Medrano-Gracia and Avan Suinesiaputra declare that they have no conflict of interest.

Alistair A. Young and Brett R. Cowan report personal fees from Siemens Healthcare but report no overlap with the current work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair A. Young.

Additional information

This article is part of the Topical Collection on Cardiac PET, CT, and MRI

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medrano-Gracia, P., Cowan, B.R., Suinesiaputra, A. et al. Challenges of Cardiac Image Analysis in Large-Scale Population-Based Studies. Curr Cardiol Rep 17, 9 (2015). https://doi.org/10.1007/s11886-015-0563-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0563-2

Keywords

Navigation