Skip to main content

Big Data and AI in Cardiac Imaging

  • Chapter
  • First Online:
Trends of Artificial Intelligence and Big Data for E-Health

Part of the book series: Integrated Science ((IS,volume 9))

  • 565 Accesses

Abstract

Cardiac imaging is of paramount importance in the diagnosis and management of patients with heart disease. Multiple modalities are encompassed within cardiac imaging, including echocardiography, magnetic resonance imaging (MRI), computed tomography (CT), and nuclear medicine. All of the modalities are primed to utilize artificial intelligence to increase accuracy, efficiency, and discover novel relationships between disease and outcomes. Artificial intelligence in cardiac imaging can improve multiple sections in the imaging process: acquisition, optimization, measurements, interpretation, and decision support. Important strides forward have already been made in each of the modalities; some have shown the ability to automatically diagnose disease, others to improve efficiency of clinical workflow, and still others to predict morbidity. Reproducibility and challenges with deployment remain barriers to widespread use of artificial intelligence in cardiac imaging, but the road ahead shows promise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell S, Norvig P (2003) Artificial intelligence: a modern approach, 2nd edn. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  2. Darcy AM, Louie AK, Roberts LW (2016) Machine learning and the profession of medicine. JAMA 315(6):551–552

    Article  CAS  Google Scholar 

  3. Beyer MLD (2012) The importance of “big data”: a definition

    Google Scholar 

  4. McAfee A, Brynjolfsson E (2012) Big data: the management revolution. Harv Bus Rev 90(10):60–66, 68, 128

    Google Scholar 

  5. George G, Haas MR, Pentland A (2014) Big data and management. In: Vol 57: academy of management Briarcliff manor, NY, pp 321–326

    Google Scholar 

  6. De Mauro A, Greco M, Grimaldi M (2016) A formal definition of big data based on its essential features. Library Rev

    Google Scholar 

  7. Coffey S, Lewandowski AJ, Garratt S et al (2017) Protocol and quality assurance for carotid imaging in 100,000 participants of UK Biobank: development and assessment. Eur J Prev Cardiol 24(17):1799–1806

    Article  Google Scholar 

  8. Petersen SE, Matthews PM, Bamberg F et al (2013) Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches. J Cardiovasc Magn Reson 15:46

    Article  Google Scholar 

  9. Lee JG, Jun S, Cho YW et al (2017) deep learning in medical imaging: general overview. Korean J Radiol 18(4):570–584

    Article  Google Scholar 

  10. Mayr A, Binder H, Gefeller O, Schmid M (2014) The evolution of boosting algorithms. From machine learning to statistical modelling. Methods Inf Med 53(6):419–427

    Google Scholar 

  11. Chykeyuk KCD, Noble JA (2011) Feature extraction and wall motion classification of 2D stress echocardiography with relevance vector machines. In: Paper presented at: international symposium on biomedical imaging

    Google Scholar 

  12. Domingos JS, Stebbing RV, Lesson P, Noble JA (2014) Stuctured random forests for myocardium delineation in 3D echocardiography, Springer International Publishing

    Google Scholar 

  13. Krittanawong C, Tunhasiriwet A, Zhang H, Wang Z, Aydar M, Kitai T (2017) Deep learning with unsupervised feature in echocardiographic imaging. J Am Coll Cardiol 69(16):2100–2101

    Article  Google Scholar 

  14. Aye CYL, Lewandowski AJ, Lamata P et al (2017) Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm. Pediatr Res 82(1):36–46

    Article  CAS  Google Scholar 

  15. Arsanjani R, Xu Y, Hayes SW et al (2013) Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. J Nucl Med 54(2):221–228

    Article  Google Scholar 

  16. Stebbing RV, Namburete AI, Upton R, Leeson P, Noble JA (2015) Data-driven shape parameterization for segmentation of the right ventricle from 3D+t echocardiography. Med Image Anal 21(1):29–39

    Article  Google Scholar 

  17. Fatima MPM (2017) Survey of machine learning algorithms for disease diagnosis. J Intel Learn Syst Appl 9:1–16

    Google Scholar 

  18. Davis A, Billick K, Horton K et al (2020) Artificial intelligence and echocardiography: a primer for cardiac sonographers. J Am Soc Echocardiogr 33(9):1061–1066

    Article  Google Scholar 

  19. Nagata Y, Kado Y, Onoue T et al (2018) Impact of image quality on reliability of the measurements of left ventricular systolic function and global longitudinal strain in 2D echocardiography. Echo Res Pract 5(1):27–39

    Article  Google Scholar 

  20. Knackstedt C, Bekkers SC, Schummers G et al (2015) Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study. J Am Coll Cardiol 66(13):1456–1466

    Article  Google Scholar 

  21. Volpato V, Mor-Avi V, Narang A et al (2019) Automated, machine learning-based, 3D echocardiographic quantification of left ventricular mass. Echocardiography 36(2):312–319

    Article  Google Scholar 

  22. Narang A, Mor-Avi V, Prado A et al (2019) Machine learning based automated dynamic quantification of left heart chamber volumes. Eur Heart J Cardiovasc Imaging 20(5):541–549

    Article  Google Scholar 

  23. Tamborini G, Piazzese C, Lang RM et al (2017) Feasibility and accuracy of automated software for transthoracic three-dimensional left ventricular volume and function analysis: comparisons with two-dimensional echocardiography, three-dimensional transthoracic manual method, and cardiac magnetic resonance imaging. J Am Soc Echocardiogr 30(11):1049–1058

    Article  Google Scholar 

  24. Tsang W, Salgo IS, Medvedofsky D et al (2016) Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc Imaging 9(7):769–782

    Article  Google Scholar 

  25. Asch FM, Poilvert N, Abraham T et al (2019) Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert. Circ Cardiovasc Imaging 12(9):e009303

    Article  Google Scholar 

  26. Muraru D, Spadotto V, Cecchetto A et al (2016) New speckle-tracking algorithm for right ventricular volume analysis from three-dimensional echocardiographic data sets: validation with cardiac magnetic resonance and comparison with the previous analysis tool. Eur Heart J Cardiovasc Imaging 17(11):1279–1289

    Article  Google Scholar 

  27. Narang ABR, Hong H, Thomas Y, Surette S, Cadieu C (2020) Acquisition of diagnostic echocardiographic images by novices using a deep learning based image guided algorithm. J Am College Cardiol 75:1564

    Article  Google Scholar 

  28. Ghorbani A, Ouyang D, Abid A et al (2020) Deep learning interpretation of echocardiograms. NPJ Digit Med 3:10

    Article  Google Scholar 

  29. Zhang J, Gajjala S, Agrawal P et al (2018) Fully automated echocardiogram interpretation in clinical practice. Circulation 138(16):1623–1635

    Article  Google Scholar 

  30. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1):1–39 e14

    Google Scholar 

  31. Salte IM, Oestvik A, Smistad E, Melichova D, Nguyen TM, Brunvand H (2020) Deep Learning/artificial intelligence of automatic measurement of global longitudinal strain by echocardiography. Eur Heart J Cardiovasc Imaging 21

    Google Scholar 

  32. Moghaddasi H, Nourian S (2016) Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput Biol Med 73:47–55

    Article  Google Scholar 

  33. Playford D, Bordin E, Mohamad R, Stewart S, Strange G (2020) Enhanced diagnosis of severe aortic stenosis using artificial intelligence: a proof-of-concept study of 530,871 echocardiograms. JACC Cardiovasc Imaging 13(4):1087–1090

    Article  Google Scholar 

  34. Arnaout R, Curran L, Zhao Y, Levine JC, Chinn E, Moon-Grady AJ (2021) An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease. Nat Med 27(5):882–891

    Article  CAS  Google Scholar 

  35. Le TKTV, Nguyen-Vo T-H (2020) Application of machine learning in screening of congenital heart disease using fetal echocardiography. J Am Coll Cardiol 75:648

    Article  Google Scholar 

  36. Sulas E, Ortu E, Raffo L, Urru M, Tumbarello R, Pani D (2018) Automatic recognition of complete atrioventricular activity in fetal pulsed-wave doppler signals. Annu Int Conf IEEE Eng Med Biol Soc 2018:917–920

    Google Scholar 

  37. Dong J, Liu S, Liao Y et al (2020) A generic quality control framework for fetal ultrasound cardiac four-chamber planes. IEEE J Biomed Health Inform 24(4):931–942

    Article  Google Scholar 

  38. Baumgartner CF, Kamnitsas K, Matthew J et al (2017) SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans Med Imaging 36(11):2204–2215

    Article  Google Scholar 

  39. Gearhart A, Goto S, Powell A, Deo R (2021) An automated view identification model for pediatric echocardiography using artificial intelligence. In: Abstract oral presentation presented at american heart association scientific sessions

    Google Scholar 

  40. He B, Ouyang D, Lopez L, Zou J, Reddy C (2021) Video-based deep learning model for automated assessment of ejection fraction in pediatric patients. American Heart Association Scientific Sessions

    Google Scholar 

  41. Frick M, Paetsch I, den Harder C et al (2011) Fully automatic geometry planning for cardiac MR imaging and reproducibility of functional cardiac parameters. J Magn Reson Imaging 34(2):457–467

    Article  Google Scholar 

  42. Leiner T, Rueckert D, Suinesiaputra A et al (2019) Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson 21(1):61

    Article  Google Scholar 

  43. Kustner T, Munoz C, Psenicny A et al (2021) Deep-learning based super-resolution for 3D isotropic coronary MR angiography in less than a minute. Magn Reson Med 86(5):2837–2852

    Article  Google Scholar 

  44. Steeden JA, Quail M, Gotschy A et al (2020) Rapid whole-heart CMR with single volume super-resolution. J Cardiovasc Magn Reson 22(1):56

    Article  Google Scholar 

  45. Zhang Q, Burrage MK, Lukaschuk E et al (2021) Toward replacing late gadolinium enhancement with artificial intelligence virtual native enhancement for gadolinium-free cardiovascular magnetic resonance tissue characterization in hypertrophic cardiomyopathy. Circulation 144(8):589–599

    Article  CAS  Google Scholar 

  46. Duan J, Bello G, Schlemper J et al (2019) Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach. IEEE Trans Med Imaging 38(9):2151–2164

    Article  Google Scholar 

  47. Avendi MR, Kheradvar A, Jafarkhani H (2016) A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal 30:108–119

    Article  CAS  Google Scholar 

  48. Ruijsink B, Puyol-Anton E, Oksuz I et al (2020) Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function. JACC Cardiovasc Imaging 13(3):684–695

    Article  Google Scholar 

  49. Sudlow C, Gallacher J, Allen N et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001779

    Article  Google Scholar 

  50. Winther HB, Hundt C, Schmidt B et al (2018) nu-net: deep learning for generalized biventricular mass and function parameters using multicenter cardiac MRI data. JACC Cardiovasc Imaging 11(7):1036–1038

    Article  Google Scholar 

  51. Karimi-Bidhendi S, Arafati A, Cheng AL, Wu Y, Kheradvar A, Jafarkhani H (2020) Fullyautomated deeplearning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases. J Cardiovasc Magn Reson 22(1):80

    Article  Google Scholar 

  52. Neisius U, El-Rewaidy H, Nakamori S, Rodriguez J, Manning WJ, Nezafat R (2019) Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 12(10):1946–1954

    Article  Google Scholar 

  53. Wang J, Yang F, Liu W et al (2020) Radiomic analysis of native T1 mapping images discriminates between MYH7 and MYBPC3-related hypertrophic cardiomyopathy. J Magn Reson Imaging 52(6):1714–1721

    Article  Google Scholar 

  54. Mancio J, Pashakhanloo F, El-Rewaidy H et al (2021) Machine learning phenotyping of scarred myocardium from cine in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging

    Google Scholar 

  55. Bello GA, Dawes TJW, Duan J et al (2019) Deep learning cardiac motion analysis for human survival prediction. Nat Mach Intel 1:95–104

    Article  Google Scholar 

  56. Diller GP, Orwat S, Vahle J et al (2020) Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis. Heart 106(13):1007–1014

    Article  CAS  Google Scholar 

  57. Kotu LP, Engan K, Borhani R et al (2015) Cardiac magnetic resonance image-based classification of the risk of arrhythmias in post-myocardial infarction patients. Artif Intell Med 64(3):205–215

    Article  Google Scholar 

  58. Geng M, Deng Y, Zhao Q et al (2018) Unsupervised/semi-supervised deep learning for low-dose CT enhancement

    Google Scholar 

  59. Zreik M, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Isgum I (2016) Automatic segmentation of the left ventricle in cardiac CT tomography using convolutional neural networks. In: Paper presented at international symposium biomedical imaging

    Google Scholar 

  60. Mozaffarian D, Benjamin EJ, Go AS (2016) Heart disease and stroke statistics—2016 update. Lippincott Williams and Wilkins Hagerstown

    Google Scholar 

  61. Denissen SJ, van der Aalst CM, Vonder M, Oudkerk M, de Koning HJ (2019) Impact of a cardiovascular disease risk screening result on preventive behaviour in asymptomatic participants of the ROBINSCA trial. Eur J Prev Cardiol 26(12):1313–1322

    Article  Google Scholar 

  62. Moss AJ, Williams MC, Newby DE, Nicol ED (2017) The updated NICE guidelines: cardiac CT as the first-line test for coronary artery disease. Curr Cardiovasc Imaging Rep 10(5):15

    Article  Google Scholar 

  63. Saraste A, Barbato E, Capodanno D et al (2019) Imaging in ESC clinical guidelines: chronic coronary syndromes. Eur Heart J Cardiovasc Imaging 20(11):1187–1197

    Article  Google Scholar 

  64. Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Isgum I (2016) Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 34:123–136

    Article  Google Scholar 

  65. Lessmann N, van Ginneken B, Zreik M et al (2018) Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions. IEEE Trans Med Imaging 37(2):615–625

    Article  Google Scholar 

  66. van Hamersvelt RW, Zreik M, Voskuil M, Viergever MA, Isgum I, Leiner T (2019) Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis. Eur Radiol 29(5):2350–2359

    Article  Google Scholar 

  67. Motwani M, Dey D, Berman DS et al (2017) Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J 38(7):500–507

    Google Scholar 

  68. van Rosendael AR, Maliakal G, Kolli KK et al (2018) Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. J Cardiovasc Comput Tomogr 12(3):204–209

    Article  Google Scholar 

  69. Min JK, Berman DS, Budoff MJ et al (2011) Rationale and design of the DeFACTO (determination of fractional flow reserve by anatomic computed tomographic angiography) study. J Cardiovasc Comput Tomogr 5(5):301–309

    Article  Google Scholar 

  70. Hadamitzky M, Achenbach S, Al-Mallah M et al (2013) Optimized prognostic score for coronary computed tomographic angiography: results from the CONFIRM registry (COronary CT Angiography EvaluatioN For Clinical Outcomes: an InteRnational Multicenter Registry). J Am Coll Cardiol 62(5):468–476

    Article  Google Scholar 

  71. Slomka PJ, Betancur J, Liang JX et al (2020) Rationale and design of the REgistry of fast myocardial perfusion imaging with NExt generation SPECT (REFINE SPECT). J Nucl Cardiol 27(3):1010–1021

    Article  Google Scholar 

  72. Slomka PJ, Dey D, Sitek A, Motwani M, Berman DS, Germano G (2017) Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev Med Devices 14(3):197–212

    Article  CAS  Google Scholar 

  73. Betancur J, Commandeur F, Motlagh M et al (2018) Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging 11(11):1654–1663

    Article  Google Scholar 

  74. Nakajima K, Kudo T, Nakata T et al (2017) Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study. Eur J Nucl Med Mol Imaging 44(13):2280–2289

    Article  Google Scholar 

  75. Arsanjani R, Dey D, Khachatryan T et al (2015) Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol 22(5):877–884

    Article  Google Scholar 

  76. Arsanjani R, Xu Y, Dey D et al (2013) Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm. J Nucl Med 54(4):549–555

    Article  Google Scholar 

  77. Haro Alonso D, Wernick MN, Yang Y, Germano G, Berman DS, Slomka P (2019) Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning. J Nucl Cardiol 26(5):1746–1754

    Article  Google Scholar 

  78. Singh A, Sengupta S, Lakshminarayanan V (2020) Explainable deep learning models in medical image analysis. J Imaging 6(6)

    Google Scholar 

  79. Holzinger a BC, Pattichis C, Kell D (2017) What do we need to build explainable AI systems for the medical Domain?

    Google Scholar 

  80. Hazarika S, Biswas A, Shen HW (2018) Uncertainty visualization using copula-based analysis in mixed distribution models. IEEE Trans Vis Comput Graph 24(1):934–943

    Article  Google Scholar 

  81. Keane PA, Topol EJ (2018) With an eye to AI and autonomous diagnosis. NPJ Digit Med 1:40

    Article  Google Scholar 

  82. Puyol-Anton E, Ruijsink B, Mariscal Harana J, Piechnik SK, Neubauer S, Petersen SE (2021) Fairness in cardiac magnetic resonance imaging: assessing sex and racial bias in deep learning-based segmentation

    Google Scholar 

  83. Tao Q, Yan W, Wang Y et al (2019) Deep learning-based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor, multicenter study. Radiology 290(1):81–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charitha D. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, C.D. (2022). Big Data and AI in Cardiac Imaging. In: Sakly, H., Yeom, K., Halabi, S., Said, M., Seekins, J., Tagina, M. (eds) Trends of Artificial Intelligence and Big Data for E-Health. Integrated Science, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-031-11199-0_5

Download citation

Publish with us

Policies and ethics