Skip to main content

Advertisement

Log in

An Update on Stem Cell Therapies for Acute Coronary Syndrome

  • Management of Acute Coronary Syndromes (R Gulati, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Well into the second decade since its conception, cell transplantation continues to undergo intensive evaluation for the treatment of myocardial infarction. At a mechanistic level, its objectives remain to replace lost cardiac cell mass with new functioning cardiomyocytes and vascular cells, thereby minimizing infarct size and scar formation, and improving clinical outcomes by preventing adverse left ventricular remodeling and recurrent ischemic events. Many different cell types, including pluripotent stem cells and various adult-derived progenitor cells, have been shown to have therapeutic potential in preclinical studies, while early phase human trial experience has provided divergent outcomes and fundamental lessons, emphasizing that there remain key issues to address and challenges to overcome before cell therapy can be applied to wider clinical practice. The purpose of this review is to provide a balanced update on recent seminal developments in this exciting field and look to the next important steps to ensure its forward progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Leor J, Patterson M, Quinones MJ, Kedes LH, Kloner RA. Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium? Circulation. 1996;94(9 Suppl):II332–6.

    CAS  PubMed  Google Scholar 

  2. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.

    Article  CAS  PubMed  Google Scholar 

  3. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913–8.

    Article  PubMed  Google Scholar 

  4. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 2002;106:3009–17.

    Article  PubMed  Google Scholar 

  5. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet. 2004;364:141–8.

    Article  PubMed  Google Scholar 

  6. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210–21.

    Article  CAS  PubMed  Google Scholar 

  7. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Losordo DW, Henry TD, Davidson C, Sup Lee J, Costa MA, Bass T, et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res. 2011;109:428–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischemic cardiomyopathy (SCIPIO): initial results of a randomized phase 1 trial. Lancet. 2011;378:1847–57.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomized phase 1 trial. Lancet. 2012;379:895–904.

    Article  PubMed  Google Scholar 

  11. Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, et al. Cardiopoietic stem cell therapy in heart failure. The C-CURE multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol. 2013;61:2329–38.

    Article  PubMed  Google Scholar 

  12. Surder D, Manka R, Lo Cicero V, Moccetti T, Rufibach K, Soncin S, et al. Intracoronary injection of bone marrow-derived mononuclear cells early or late after acute myocardial infarction: effects on global left ventricular function. Circulation. 2013;127:1968–79. This European randomized nonplacebo controlled trial was 1 of 3 recent negative studies in the field and was also notable for performing head-to-head comparison between intracoronary delivery of autologous BMMNCs early and late after MI.

    Article  PubMed  Google Scholar 

  13. Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011;306:2110–9. This important multicenter U.S. clinical trial was carried out by the NHLBI-CCTRN group and specifically studied intracoronary BMMNCs delivered 2–3 weeks post MI, failing to show a benefit from cell therapy on the surrogate indices that were measured.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308:2380–9. This was the randomized placebo-controlled study performed by the US CCTRN examining 2 time points of intracoronary BMMNC delivery within the first week after MI. Using core laboratory analysis and cardiac MRI as its primary imaging modality, it failed to show benefit from cell therapy in all major parameters measured.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Francis DP, Mielewczik M, Zargaran D, Cole GD. Autologous bone marrow-derived stem cell therapy in heart disease: discrepancies and contradictions. Int J Cardiol. 2013;168:3381–403.

    Article  PubMed  Google Scholar 

  16. Nowbar AN, Mielewczik M, Karavassilis M, Dehbi HM, Shun-Shin MJ, Jones S, et al. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ. 2014;348:g2688. This very recent meta-analysis has sparked further controversy in the field of cardiovascular cell-based therapy by suggesting that the size of treatment effect reported by individual clinical studies, thus far, correlates directly with their number of methodological and reporting discrepancies.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Schoenfeld M, Frishman WH, Leri A, Kajstura J, Anversa P. The existence of myocardial repair: mechanistic insights and enhancements. Cardiol Rev. 2013;21:111–20.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493:433–6. This elegant preclinical study demonstrated that postnatal genesis of cardiac cells is achieved predominantly by the division of pre-existing cardiomyocytes, rather than cardiac stem cells, and this process occurs with normal ageing and is augmented near sites of myocardial injury. It provides important information about myocardial homeostasis and the potential for endogenous repair.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mouquet F, Pfister O, Jain M, Oikonomopoulos A, Ngoy S, Summer R, et al. Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res. 2005;97:1090–2.

    Article  CAS  PubMed  Google Scholar 

  20. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:273–7. This newly published study is notable for applying human ESC-cardiomyocytes to a primate model of myocardial ischemia-reperfusion, thus, bringing pluripotent stem cell therapy a step closer to the clinic. Although using only very small sample sizes and failing to show a functional benefit from cell transplantation, it provides important lessons about the durability of cell engraftment, the need to use very large cell doses, and the potential for ventricular arrhythmia as an adverse effect.

  21. Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation. 2009;120:408–16.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zohlnhofer D, Dibra A, Koppara T, de Waha A, Ripa RS, Kastrup J, et al. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J Am Coll Cardiol. 2008;51:1429–37.

    Article  PubMed  Google Scholar 

  23. Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J. 2006;27:1114–22.

    Article  PubMed  Google Scholar 

  24. Perin EC, Silva GV, Assad JA, Vela D, Buja LM, Sousa AL, et al. Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J Mol Cell Cardiol. 2008;44:486–95.

    Article  CAS  PubMed  Google Scholar 

  25. Psaltis PJ, Zannettino AC, Gronthos S, Worthley SG. Intramyocardial navigation and mapping for stem cell delivery. J Cardiovasc Transl Res. 2010;3:135–46.

    Article  PubMed  Google Scholar 

  26. Krause K, Jaquet K, Schneider C, Haupt S, Lioznov MV, Otte KM, et al. Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: first-in-man study. Heart. 2009;95:1145–52.

    Article  CAS  PubMed  Google Scholar 

  27. Gyongyosi M, Lang I, Dettke M, Beran G, Graf S, Sochor H, et al. Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study. Nat Clin Pract Cardiovasc Med. 2009;6:70–81.

    Article  PubMed  Google Scholar 

  28. Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107:913–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011;8:228–40.

    Article  CAS  PubMed  Google Scholar 

  31. Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 2012;10:16–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Menard C, Hagege AA, Agbulut O, Barro M, Morichetti MC, Brasselet C, et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet. 2005;366:1005–12.

    Article  PubMed  Google Scholar 

  33. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012;489:322–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009;104:e30–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Burridge PW, Thompson S, Millrod MA, Weinberg S, Yuan X, Peters A, et al. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS One. 2011;6:e18293.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Mauritz C, Martens A, Rojas SV, Schnick T, Rathert C, Schecker N, et al. Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur Heart J. 2011;32:2634–41.

    Article  CAS  PubMed  Google Scholar 

  38. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322:945–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458:771–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Yoshida Y, Yamanaka S. iPS cells: a source of cardiac regeneration. J Mol Cell Cardiol. 2011;50:327–32.

    Article  CAS  PubMed  Google Scholar 

  41. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599–604. This is 1 of a handful of recent preclinical publications showing the potential for cardiac fibroblasts to be reprogrammed directly to functional cardiomyocytes in-vivo, with positive effect on myocardial repair and function. This type of cellular reprogramming strategy bypasses the need to use exogenous cell delivery and represents a major paradigm shift in efforts to achieve cardiovascular regeneration and repair.

  43. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485:593–8. As per reference 42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110:1465–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K, et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A. 2013;110:5588–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomized controlled trial. Lancet. 2006;367:113–21.

    Article  PubMed  Google Scholar 

  47. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199–209.

    Article  CAS  PubMed  Google Scholar 

  48. Kawamoto A, Iwasaki H, Kusano K, Murayama T, Oyamada A, Silver M, et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation. 2006;114:2163–9.

    Article  PubMed  Google Scholar 

  49. Quyyumi AA, Waller EK, Murrow J, Esteves F, Galt J, Oshinski J, et al. CD34(+) cell infusion after ST elevation myocardial infarction is associated with improved perfusion and is dose dependent. Am Heart J. 2011;161:98–105.

    Article  PubMed  Google Scholar 

  50. Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J. 2007;28:766–72.

    Article  PubMed  Google Scholar 

  51. Assmus B, Tonn T, Seeger FH, Yoon CH, Leistner D, Klotsche J, et al. Red blood cell contamination of the final cell product impairs the efficacy of autologous bone marrow mononuclear cell therapy. J Am Coll Cardiol. 2010;55:1385–94.

    Article  PubMed  Google Scholar 

  52. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, et al. Intracoronary bone marrow cell transfer after myocardial infarction: 18 months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287–94.

    Article  PubMed  Google Scholar 

  53. Cao F, Sun D, Li C, Narsinh K, Zhao L, Li X, et al. Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. Eur Heart J. 2009;30:1986–94.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Leistner DM, Fischer-Rasokat U, Honold J, Seeger FH, Schachinger V, Lehmann R, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy. Clin Res Cardiol. 2011;100:925–34.

    Article  PubMed  Google Scholar 

  55. Assmus B, Leistner DM, Schachinger V, Erbs S, Elsasser A, Haberbosch W, et al. Long-term clinical outcome after intracoronary application of bone marrow-derived mononuclear cells for acute myocardial infarction: migratory capacity of administered cells determines event-free survival. Eur Heart J. 2014;35:1275–83. This publication from the REPAIR-AMI study describes 5-year data for clinical outcomes, including predictors of adverse events.

  56. Assmus B, Rolf A, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, et al. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail. 2010;3:89–96.

    Article  PubMed  Google Scholar 

  57. Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J. 2008;29:1807–18.

    Article  CAS  PubMed  Google Scholar 

  58. Jeevanantham V, Butler M, Saad A, Abdel-Latif A, Zuba-Surma EK, Dawn B. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012;126:551–68.

    Article  PubMed  Google Scholar 

  59. Delewi R, Hirsch A, Tijssen JG, Schachinger V, Wojakowski W, Roncalli J, et al. Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: a collaborative meta-analysis. Eur Heart J. 2014;35:989–98. This current meta-analysis reported that the benefit of intracoronary BMMNC infusion for patients with STEMI was most pronounced in younger patients and those with more severely depressed LV EF at baseline.

    Article  PubMed  Google Scholar 

  60. de Jong R, Houtgraaf JH, Samiei S, Boersma E, Duckers HJ. Intracoronary stem cell infusion after acute myocardial infarction: a meta-analysis and update on clinical trials. Circ Cardiovasc Interv. 2014;7:156–67. This is 1 of several contemporary meta-analyses concluding overall benefit of BM cell therapy for MI, but also highlighting the importance of methodological design. Notably therapeutic benefit in terms of LV function and infarct size was no longer upheld when only the studies using cardiac MRI as their imaging tool were included in the analysis.

    Article  PubMed  Google Scholar 

  61. Traverse JH, Henry TD, Moye LA. Is the measurement of left ventricular ejection fraction the proper end point for cell therapy trials? An analysis of the effect of bone marrow mononuclear stem cell administration on left ventricular ejection fraction after ST-segment elevation myocardial infarction when evaluated by cardiac magnetic resonance imaging. Am Heart J. 2011;162:671–7.

    Article  PubMed  Google Scholar 

  62. Psaltis PJ, Harbuzariu A, Delacroix S, Holroyd EW, Simari RD. Resident vascular progenitor cells—diverse origins, phenotype, and function. J Cardiovasc Transl Res. 2011;4:161–76.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Tendera M, Wojakowski W, Ruzyllo W, Chojnowska L, Kepka C, Tracz W, et al. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J. 2009;30:1313–21.

    Article  PubMed  Google Scholar 

  64. Vrtovec B, Poglajen G, Lezaic L, Sever M, Socan A, Domanovic D, et al. Comparison of transendocardial and intracoronary CD34+ cell transplantation in patients with nonischemic dilated cardiomyopathy. Circulation. 2013;128(11 Suppl 1):S42–9.

    Article  CAS  PubMed  Google Scholar 

  65. Taljaard M, Ward MR, Kutryk MJ, Courtman DW, Camack NJ, Goodman SG, et al. Rationale and design of Enhanced Angiogenic Cell Therapy in Acute Myocardial Infarction (ENACT-AMI): the first randomized placebo-controlled trial of enhanced progenitor cell therapy for acute myocardial infarction. Am Heart J. 2010;159:354–60.

    Article  CAS  PubMed  Google Scholar 

  66. Psaltis PJ, Spoon DB, Wong DT. Utility of mesenchymal stromal cells for myocardial infarction. Transitioning from bench to bedside. Minerva Cardioangiol. 2013;61:639–63. This is an up-to-date exhaustive overview on the properties that make mesenchymal stromal cells such an attractive adult cell candidate for cardiovascular repair.

    CAS  PubMed  Google Scholar 

  67. Richardson JD, Nelson AJ, Zannettino AC, Gronthos S, Worthley SG, Psaltis PJ. Optimization of the cardiovascular therapeutic properties of mesenchymal stromal/stem cells-taking the next step. Stem Cell Rev. 2013;9:281–302.

    Article  CAS  PubMed  Google Scholar 

  68. Schuleri KH, Amado LC, Boyle AJ, Centola M, Saliaris AP, Gutman MR, et al. Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am J Physiol Heart Circ Physiol. 2008;294:H2002–11.

    CAS  PubMed  Google Scholar 

  69. Dixon JA, Gorman RC, Stroud RE, Bouges S, Hirotsugu H, Gorman III JH, et al. Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction. Circulation. 2009;120(11 Suppl):S220–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94:92–5.

    Article  PubMed  Google Scholar 

  71. Katritsis DG, Sotiropoulou PA, Karvouni E, Karabinos I, Korovesis S, Perez SA, et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv. 2005;65:321–9.

    Article  PubMed  Google Scholar 

  72. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110:3499–506.

    Article  CAS  PubMed  Google Scholar 

  73. Psaltis PJ, Zannettino AC, Worthley SG, Gronthos S. Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells. 2008;26:2201–10.

    Article  PubMed  Google Scholar 

  74. Psaltis PJ, Paton S, See F, Arthur A, Martin S, Itescu S, et al. Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol. 2010;223:530–40.

    CAS  PubMed  Google Scholar 

  75. See F, Seki T, Psaltis PJ, Sondermeijer HP, Gronthos S, Zannettino AC, et al. Therapeutic effects of human STRO-3-selected mesenchymal precursor cells and their soluble factors in experimental myocardial ischemia. J Cell Mol Med. 2011;15:2117–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Psaltis PJ, Carbone A, Nelson AJ, Lau DH, Jantzen T, Manavis J, et al. Reparative effects of allogeneic mesenchymal precursor cells delivered transendocardially in experimental nonischemic cardiomyopathy. JACC Cardiovasc Interv. 2010;3:974–83.

    Article  PubMed  Google Scholar 

  77. Noort WA, Oerlemans MI, Rozemuller H, Feyen D, Jaksani S, Stecher D, et al. Human vs porcine mesenchymal stromal cells: phenotype, differentiation potential, immunomodulation and cardiac improvement after transplantation. J Cell Mol Med. 2012;16:1827–39.

    Article  CAS  PubMed  Google Scholar 

  78. Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, et al. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodeling after acute myocardial infarction. Eur Heart J. 2007;28:2667–77.

    Article  PubMed  Google Scholar 

  79. Houtgraaf JH, den Dekker WK, van Dalen BM, Springeling T, de Jong R, van Geuns RJ, et al. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2012;59:539–40. This is a brief, but seminal report, describing results from the first study in which freshly isolated adipose-derived cells were used as an adjunctive therapy for MI.

    Article  PubMed  Google Scholar 

  80. Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation. 2012;126(11 Suppl 1):S54–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, et al. Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol. 2010;56:721–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Malliaras K, Li TS, Luthringer D, Terrovitis J, Cheng K, Chakravarty T, et al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation. 2012;125:100–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Lauden L, Boukouaci W, Borlado LR, Lopez IP, Sepulveda P, Tamouza R, et al. Allogenicity of human cardiac stem/progenitor cells orchestrated by programmed death ligand 1. Circ Res. 2013;112:451–64.

    Article  CAS  PubMed  Google Scholar 

  84. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111:2198–202.

    Article  PubMed  Google Scholar 

  85. Li Z, Lee A, Huang M, Chun H, Chung J, Chu P, et al. Imaging survival and function of transplanted cardiac resident stem cells. J Am Coll Cardiol. 2009;53:1229–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Perin EC, Tian M, Marini III FC, Silva GV, Zheng Y, Baimbridge F, et al. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model. PLoS One. 2011;6:e22949.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Hong KU, Li QH, Guo Y, Patton NS, Moktar A, Bhatnagar A, et al. A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Res Cardiol. 2013;108:346.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103:1204–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Suncion VY, Schulman IH, Hare JM. Concise review: the role of clinical trials in deciphering mechanisms of action of cardiac cell-based therapy. Stem Cells Transl Med. 2012;1:29–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Psaltis PJ, Simari RD, Rodriguez-Porcel M. Emerging roles for integrated imaging modalities in cardiovascular cell-based therapeutics: a clinical perspective. Eur J Nucl Med Mol Imaging. 2011;39:165–81.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Psaltis PJ, Peterson KM, Xu R, Franchi F, Witt T, Chen IY, et al. Noninvasive monitoring of oxidative stress in transplanted mesenchymal stromal cells. JACC Cardiovasc Imaging. 2013;6:795–802.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Nahrendorf M, Sosnovik DE, Waterman P, Swirski FK, Pande AN, Aikawa E, et al. Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res. 2007;100:1218–25.

    Article  CAS  PubMed  Google Scholar 

  93. Meoli DF, Sadeghi MM, Krassilnikova S, Bourke BN, Giordano FJ, Dione DP, et al. Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest. 2004;113:1684–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Hofstra L, Liem IH, Dumont EA, Boersma HH, van Heerde WL, Doevendans PA, et al. Visualization of cell death in vivo in patients with acute myocardial infarction. Lancet. 2000;356:209–12.

    Article  CAS  PubMed  Google Scholar 

  95. Szady AD, Pepine CJ, Sharma SV, Cogle CR, Perin EC, Ellis SG, et al. A critical analysis of clinical outcomes reported in stem cell trials for acute myocardial infarction: some thoughts for design of future trials. Curr Atheroscler Rep. 2013;15:341.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Richardson JD, Bertaso AG, Psaltis PJ, Frost L, Carbone A, Paton S, et al. Impact of timing and dose of mesenchymal stromal cell therapy in a preclinical model of acute myocardial infarction. J Card Fail. 2013;19:342–53.

    Article  PubMed  Google Scholar 

  97. Richardson JD, Psaltis PJ, Frost L, Paton S, Carbone A, Bertaso AG, et al. Incremental benefits of repeated mesenchymal stromal cell administration compared with solitary intervention after myocardial infarction. Cytotherapy. 2014;16:460–70.

    Article  PubMed  Google Scholar 

  98. Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, et al. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation. 2012;127:213–23. This novel xenotransplantation study describes the combined delivery of 2 complementary cell types (human MSCs and c-kit+ CSCs) in a swine model of MI. It represents an important step forward into the next generation of cardiovascular studies using adult-derived cells, in which single doses of 1 cell type are no longer relied upon to produce a significant and durable reparative effect.

  99. Huikuri HV, Kervinen K, Niemela M, Ylitalo K, Saily M, Koistinen P, et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J. 2008;29:2723–32.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Peter J. Psaltis and Dennis T. L. Wong both receive funding from the National Health and Medical Research Council of Australia.

Compliance with Ethics Guidelines

Conflict of Interest

Peter J. Psaltis, Daniel B. Spoon, Dennis T.L. Wong, and Rajiv Gulati declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Psaltis.

Additional information

This article is part of the Topical Collection on Management of Acute Coronary Syndromes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Psaltis, P.J., Spoon, D.B., Wong, D.T.L. et al. An Update on Stem Cell Therapies for Acute Coronary Syndrome. Curr Cardiol Rep 16, 526 (2014). https://doi.org/10.1007/s11886-014-0526-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-014-0526-z

Keywords

Navigation