Skip to main content

Advertisement

Log in

Resident Vascular Progenitor Cells—Diverse Origins, Phenotype, and Function

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The fundamental contributions that blood vessels make toward organogenesis and tissue homeostasis are reflected by the considerable ramifications that loss of vascular wall integrity has on pre- and postnatal health. During both neovascularization and vessel wall remodeling after insult, the dynamic nature of vascular cell growth and replacement vitiates traditional impressions that blood vessels contain predominantly mature, terminally differentiated cell populations. Recent discoveries have verified the presence of diverse stem/progenitor cells for both vascular and non-vascular progeny within the mural layers of the vasculature. During embryogenesis, this encompasses the emergence of definitive hematopoietic stem cells and multipotent mesoangioblasts from the developing dorsal aorta. Ancestral cells have also been identified and isolated from mature, adult blood vessels, showing variable capacity for endothelial, smooth muscle, and mesenchymal differentiation. At present, the characterization of these different vascular wall progenitors remains somewhat rudimentary, but there is evidence for their constitutive residence within organized compartments in the vessel wall, most compellingly in the tunica adventitia. This review overviews the spectrum of resident stem/progenitor cells that have been documented in macro- and micro-vessels during developmental and adult life and considers the implications for a local, vascular wall stem cell niche(s) in the pathogenesis and treatment of cardiovascular and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tavian, M., Zheng, B., Oberlin, E., Crisan, M., Sun, B., Huard, J., et al. (2005). The vascular wall as a source of stem cells. Annals of the New York Academy of Sciences, 1044, 41–50.

    PubMed  Google Scholar 

  2. Carmeliet, P. (2003). Angiogenesis in health and disease. Natural Medicines, 9, 653–660.

    CAS  Google Scholar 

  3. Ross, R. (1993). The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 362, 801–809.

    PubMed  CAS  Google Scholar 

  4. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.

    PubMed  CAS  Google Scholar 

  5. Ingram, D. A., Mead, L. E., Moore, D. B., Woodard, W., Fenoglio, A., & Yoder, M. C. (2005). Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 105, 2783–2786.

    PubMed  CAS  Google Scholar 

  6. Simper, D., Stalboerger, P. G., Panetta, C. J., Wang, S., & Caplice, N. M. (2002). Smooth muscle progenitor cells in human blood. Circulation, 106, 1199–1204.

    PubMed  CAS  Google Scholar 

  7. Hu, Y., Zhang, Z., Torsney, E., Afzal, A. R., Davison, F., Metzler, B., et al. (2004). Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. Journal of Clinical Investigation, 113, 1258–1265.

    PubMed  CAS  Google Scholar 

  8. Passman, J. N., Dong, X. R., Wu, S. P., Maguire, C. T., Hogan, K. A., Bautch, V. L., et al. (2008). A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 9349–9354.

    PubMed  CAS  Google Scholar 

  9. Zengin, E., Chalajour, F., Gehling, U. M., Ito, W. D., Treede, H., Lauke, H., et al. (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 133, 1543–1551.

    PubMed  CAS  Google Scholar 

  10. Tintut, Y., Alfonso, Z., Saini, T., Radcliff, K., Watson, K., Bostrom, K., et al. (2003). Multilineage potential of cells from the artery wall. Circulation, 108, 2505–2510.

    PubMed  Google Scholar 

  11. Sabin, F. R. (1917). Preliminary note on the differentiation of angioblasts and the method by which they produce blood-vessels, blood-plasma, and red blood-cells as seen in the living chick. The Anatomical Record, 13, 199–204.

    Google Scholar 

  12. Murray, P. D. F. (1932). The development in vitro of blood of early chick embryo. Proceedings of the Royal Society of London Biological Sciences, 111, 497–521.

    CAS  Google Scholar 

  13. Ferguson, J. E., 3rd, Kelley, R. W., & Patterson, C. (2005). Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 2246–2254.

    PubMed  CAS  Google Scholar 

  14. Schmidt, A., Brixius, K., & Bloch, W. (2007). Endothelial precursor cell migration during vasculogenesis. Circulation Research, 101, 125–136.

    PubMed  CAS  Google Scholar 

  15. Bertrand, J. Y., Chi, N. C., Santoso, B., Teng, S., Stainier, D. Y., & Traver, D. (2010). Haematopoietic stem cells derive directly from aortic endothelium during development. Nature, 464, 108–111.

    PubMed  CAS  Google Scholar 

  16. Kissa, K., & Herbomel, P. (2010). Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature, 464, 112–115.

    PubMed  CAS  Google Scholar 

  17. Jaffredo, T., Gautier, R., Eichmann, A., & Dieterlen-Lievre, F. (1998). Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development, 125, 4575–4583.

    PubMed  CAS  Google Scholar 

  18. Ciau-Uitz, A., Walmsley, M., & Patient, R. (2000). Distinct origins of adult and embryonic blood in Xenopus. Cell, 102, 787–796.

    PubMed  CAS  Google Scholar 

  19. Medvinsky, A., & Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell, 86, 897–906.

    PubMed  CAS  Google Scholar 

  20. Zovein, A. C., Hofmann, J. J., Lynch, M., French, W. J., Turlo, K. A., Yang, Y., et al. (2008). Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell, 3, 625–636.

    PubMed  CAS  Google Scholar 

  21. Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E., & Speck, N. A. (2009). Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature, 457, 887–891.

    PubMed  CAS  Google Scholar 

  22. Boisset, J. C., van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E., & Robin, C. (2010). In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature, 464, 116–120.

    PubMed  CAS  Google Scholar 

  23. Dzierzak, E., & Speck, N. A. (2008). Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nature Immunology, 9, 129–136.

    PubMed  CAS  Google Scholar 

  24. Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132, 598–611.

    PubMed  CAS  Google Scholar 

  25. Vogeli, K. M., Jin, S. W., Martin, G. R., & Stainier, D. Y. (2006). A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature, 443, 337–339.

    PubMed  CAS  Google Scholar 

  26. Eilken, H. M., Nishikawa, S., & Schroeder, T. (2009). Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature, 457, 896–900.

    PubMed  CAS  Google Scholar 

  27. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., & Keller, G. (1998). A common precursor for hematopoietic and endothelial cells. Development, 125, 725–732.

    PubMed  CAS  Google Scholar 

  28. Kennedy, M., D’Souza, S. L., Lynch-Kattman, M., Schwantz, S., & Keller, G. (2007). Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood, 109, 2679–2687.

    PubMed  CAS  Google Scholar 

  29. Lacaud, G., Gore, L., Kennedy, M., Kouskoff, V., Kingsley, P., Hogan, C., et al. (2002). Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood, 100, 458–466.

    PubMed  CAS  Google Scholar 

  30. Robertson, S. M., Kennedy, M., Shannon, J. M., & Keller, G. (2000). A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development, 127, 2447–2459.

    PubMed  CAS  Google Scholar 

  31. Fehling, H. J., Lacaud, G., Kubo, A., Kennedy, M., Robertson, S., Keller, G., et al. (2003). Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development, 130, 4217–4227.

    PubMed  CAS  Google Scholar 

  32. Zambidis, E. T., Park, T. S., Yu, W., Tam, A., Levine, M., Yuan, X., et al. (2008). Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood, 112, 3601–3614.

    PubMed  CAS  Google Scholar 

  33. Bailey, A. S., Jiang, S., Afentoulis, M., Baumann, C. I., Schroeder, D. A., Olson, S. B., et al. (2004). Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood, 103, 13–19.

    PubMed  CAS  Google Scholar 

  34. Niwa, A., Umeda, K., Chang, H., Saito, M., Okita, K., Takahashi, K., et al. (2009). Orderly hematopoietic development of induced pluripotent stem cells via Flk-1(+) hemoangiogenic progenitors. Journal of Cellular Physiology, 221, 367–377.

    PubMed  CAS  Google Scholar 

  35. Cossu, G., & Bianco, P. (2003). Mesoangioblasts–vascular progenitors for extravascular mesodermal tissues. Current Opinion in Genetics & Development, 13, 537–542.

    CAS  Google Scholar 

  36. Minasi, M. G., Riminucci, M., De Angelis, L., Borello, U., Berarducci, B., Innocenzi, A., et al. (2002). The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development, 129, 2773–2783.

    PubMed  CAS  Google Scholar 

  37. Le Lievre, C. S., & Le Douarin, N. M. (1975). Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. Journal of Embryology and Experimental Morphology, 34, 125–154.

    PubMed  Google Scholar 

  38. Jiang, X., Rowitch, D. H., Soriano, P., McMahon, A. P., & Sucov, H. M. (2000). Fate of the mammalian cardiac neural crest. Development, 127, 1607–1616.

    PubMed  CAS  Google Scholar 

  39. Wada, A. M., Willet, S. G., & Bader, D. (2003). Coronary vessel development: a unique form of vasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 2138–2145.

    PubMed  CAS  Google Scholar 

  40. Hungerford, J. E., Owens, G. K., Argraves, W. S., & Little, C. D. (1996). Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Developmental Biology, 178, 375–392.

    PubMed  CAS  Google Scholar 

  41. Shi, Q., Rafii, S., Wu, M. H., Wijelath, E. S., Yu, C., Ishida, A., et al. (1998). Evidence for circulating bone marrow-derived endothelial cells. Blood, 92, 362–367.

    PubMed  CAS  Google Scholar 

  42. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Natural Medicines, 7, 430–436.

    CAS  Google Scholar 

  43. Kawamoto, A., Gwon, H. C., Iwaguro, H., Yamaguchi, J. I., Uchida, S., Masuda, H., et al. (2001). Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 103, 634–637.

    PubMed  CAS  Google Scholar 

  44. Losordo, D. W., Schatz, R. A., White, C. J., Udelson, J. E., Veereshwarayya, V., Durgin, M., et al. (2007). Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation, 115, 3165–3172.

    PubMed  Google Scholar 

  45. Schwartz, S. M., & Benditt, E. P. (1977). Aortic endothelial cell replication. I. Effects of age and hypertension in the rat. Circulation Research, 41, 248–255.

    PubMed  CAS  Google Scholar 

  46. Schwartz, S. M., & Benditt, E. P. (1976). Clustering of replicating cells in aortic endothelium. Proceedings of the National Academy of Sciences of the United States of America, 73, 651–653.

    PubMed  CAS  Google Scholar 

  47. Nolan, D. J., Ciarrocchi, A., Mellick, A. S., Jaggi, J. S., Bambino, K., Gupta, S., et al. (2007). Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes & Development, 21, 1546–1558.

    CAS  Google Scholar 

  48. Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C., Silver, M., et al. (1999). Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation Research, 85, 221–228.

    PubMed  CAS  Google Scholar 

  49. Yoon, C. H., Hur, J., Park, K. W., Kim, J. H., Lee, C. S., Oh, I. Y., et al. (2005). Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation, 112, 1618–1627.

    PubMed  Google Scholar 

  50. Werner, N., Junk, S., Laufs, U., Link, A., Walenta, K., Bohm, M., et al. (2003). Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circulation Research, 93, e17–e24.

    PubMed  CAS  Google Scholar 

  51. Timmermans, F., Plum, J., Yoder, M. C., Ingram, D. A., Vandekerckhove, B., & Case, J. (2009). Endothelial progenitor cells: identity defined? Journal of Cellular and Molecular Medicine, 13, 87–102.

    PubMed  Google Scholar 

  52. Gulati, R., Jevremovic, D., Peterson, T. E., Chatterjee, S., Shah, V., Vile, R. G., et al. (2003). Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circulation Research, 93, 1023–1025.

    PubMed  CAS  Google Scholar 

  53. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. The New England Journal of Medicine, 348, 593–600.

    PubMed  Google Scholar 

  54. Ingram, D. A., Mead, L. E., Tanaka, H., Meade, V., Fenoglio, A., Mortell, K., et al. (2004). Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood, 104, 2752–2760.

    PubMed  CAS  Google Scholar 

  55. Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95, 952–958.

    PubMed  CAS  Google Scholar 

  56. Chakroborty, D., Chowdhury, U. R., Sarkar, C., Baral, R., Dasgupta, P. S., & Basu, S. (2008). Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. Journal of Clinical Investigation, 118, 1380–1389.

    PubMed  CAS  Google Scholar 

  57. Case, J., Mead, L. E., Bessler, W. K., Prater, D., White, H. A., Saadatzadeh, M. R., et al. (2007). Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Experimental Hematology, 35, 1109–1118.

    PubMed  CAS  Google Scholar 

  58. Yoder, M. C., Mead, L. E., Prater, D., Krier, T. R., Mroueh, K. N., Li, F., et al. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 109, 1801–1809.

    PubMed  CAS  Google Scholar 

  59. Rohde, E., Bartmann, C., Schallmoser, K., Reinisch, A., Lanzer, G., Linkesch, W., et al. (2007). Immune cells mimic the morphology of endothelial progenitor colonies in vitro. Stem Cells, 25, 1746–1752.

    PubMed  CAS  Google Scholar 

  60. Rehman, J., Li, J., Orschell, C. M., & March, K. L. (2003). Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 107, 1164–1169.

    PubMed  Google Scholar 

  61. Guven, H., Shepherd, R. M., Bach, R. G., Capoccia, B. J., & Link, D. C. (2006). The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. Journal of the American College of Cardiology, 48, 1579–1587.

    PubMed  Google Scholar 

  62. Hu, Y., Davison, F., Zhang, Z., & Xu, Q. (2003). Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells. Circulation, 108, 3122–3127.

    PubMed  Google Scholar 

  63. Perry, T. E., Song, M., Despres, D. J., Kim, S. M., San, H., Yu, Z. X., et al. (2009). Bone marrow-derived cells do not repair endothelium in a mouse model of chronic endothelial cell dysfunction. Cardiovascular Research, 84, 317–325.

    PubMed  CAS  Google Scholar 

  64. Hillebrands, J. L., Klatter, F. A., van Dijk, W. D., & Rozing, J. (2002). Bone marrow does not contribute substantially to endothelial-cell replacement in transplant arteriosclerosis. Natural Medicines, 8, 194–195.

    Google Scholar 

  65. Gothert, J. R., Gustin, S. E., van Eekelen, J. A., Schmidt, U., Hall, M. A., Jane, S. M., et al. (2004). Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood, 104, 1769–1777.

    PubMed  Google Scholar 

  66. Majka, S. M., Jackson, K. A., Kienstra, K. A., Majesky, M. W., Goodell, M. A., & Hirschi, K. K. (2003). Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. Journal of Clinical Investigation, 111, 71–79.

    PubMed  CAS  Google Scholar 

  67. Grenier, G., Scime, A., Le Grand, F., Asakura, A., Perez-Iratxeta, C., Andrade-Navarro, M. A., et al. (2007). Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis. Stem Cells, 25, 3101–3110.

    PubMed  CAS  Google Scholar 

  68. Aicher, A., Rentsch, M., Sasaki, K., Ellwart, J. W., Fandrich, F., Siebert, R., et al. (2007). Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circulation Research, 100, 581–589.

    PubMed  CAS  Google Scholar 

  69. Bearzi, C., Leri, A., Lo Monaco, F., Rota, M., Gonzalez, A., Hosoda, T., et al. (2009). Identification of a coronary vascular progenitor cell in the human heart. Proceedings of the National Academy of Sciences of the United States of America, 106, 15885–15890.

    PubMed  CAS  Google Scholar 

  70. Alessandri, G., Girelli, M., Taccagni, G., Colombo, A., Nicosia, R., Caruso, A., et al. (2001). Human vasculogenesis ex vivo: embryonal aorta as a tool for isolation of endothelial cell progenitors. Laboratory Investigation, 81, 875–885.

    PubMed  CAS  Google Scholar 

  71. Invernici, G., Emanueli, C., Madeddu, P., Cristini, S., Gadau, S., Benetti, A., et al. (2007). Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. The American Journal of Pathology, 170, 1879–1892.

    PubMed  CAS  Google Scholar 

  72. Sata, M., Saiura, A., Kunisato, A., Tojo, A., Okada, S., Tokuhisa, T., et al. (2002). Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Natural Medicines, 8, 403–409.

    CAS  Google Scholar 

  73. Kumar, A. H., Metharom, P., Schmeckpeper, J., Weiss, S., Martin, K., & Caplice, N. M. (2010). Bone marrow-derived CX3CR1 progenitors contribute to neointimal smooth muscle cells via fractalkine CX3CR1 interaction. The FASEB Journal, 24, 81–92.

    PubMed  Google Scholar 

  74. Sainz, J., Al Haj Zen, A., Caligiuri, G., Demerens, C., Urbain, D., Lemitre, M., et al. (2006). Isolation of “side population” progenitor cells from healthy arteries of adult mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 281–286.

    PubMed  CAS  Google Scholar 

  75. Li, G., Chen, S. J., Oparil, S., Chen, Y. F., & Thompson, J. A. (2000). Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation, 101, 1362–1365.

    PubMed  CAS  Google Scholar 

  76. Frid, M. G., Kale, V. A., & Stenmark, K. R. (2002). Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circulation Research, 90, 1189–1196.

    PubMed  CAS  Google Scholar 

  77. Shimizu, K., Sugiyama, S., Aikawa, M., Fukumoto, Y., Rabkin, E., Libby, P., et al. (2001). Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic transplant arteriopathy. Natural Medicines, 7, 738–741.

    CAS  Google Scholar 

  78. Hu, Y., Davison, F., Ludewig, B., Erdel, M., Mayr, M., Url, M., et al. (2002). Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells. Circulation, 106, 1834–1839.

    PubMed  Google Scholar 

  79. Caplice, N. M., Bunch, T. J., Stalboerger, P. G., Wang, S., Simper, D., Miller, D. V., et al. (2003). Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proceedings of the National Academy of Sciences of the United States of America, 100, 4754–4759.

    PubMed  CAS  Google Scholar 

  80. Deb, A., Skelding, K. A., Wang, S., Reeder, M., Simper, D., & Caplice, N. M. (2004). Integrin profile and in vivo homing of human smooth muscle progenitor cells. Circulation, 110, 2673–2677.

    PubMed  CAS  Google Scholar 

  81. Sugiyama, S., Kugiyama, K., Nakamura, S., Kataoka, K., Aikawa, M., Shimizu, K., et al. (2006). Characterization of smooth muscle-like cells in circulating human peripheral blood. Atherosclerosis, 187, 351–362.

    PubMed  CAS  Google Scholar 

  82. Bentzon, J. F., Sondergaard, C. S., Kassem, M., & Falk, E. (2007). Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice. Circulation, 116, 2053–2061.

    PubMed  CAS  Google Scholar 

  83. Rodriguez-Menocal, L., St-Pierre, M., Wei, Y., Khan, S., Mateu, D., Calfa, M., et al. (2009). The origin of post-injury neointimal cells in the rat balloon injury model. Cardiovascular Research, 81, 46–53.

    PubMed  CAS  Google Scholar 

  84. De Leon, H., Ollerenshaw, J. D., Griendling, K. K., & Wilcox, J. N. (2001). Adventitial cells do not contribute to neointimal mass after balloon angioplasty of the rat common carotid artery. Circulation, 104, 1591–1593.

    PubMed  Google Scholar 

  85. Pasquinelli, G., Tazzari, P. L., Vaselli, C., Foroni, L., Buzzi, M., Storci, G., et al. (2007). Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells, 25, 1627–1634.

    PubMed  CAS  Google Scholar 

  86. Campagnolo, P., Cesselli, D., Al Haj Zen, A., Beltrami, A. P., Krankel, N., Katare, R., et al. (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121, 1735–1745.

    PubMed  Google Scholar 

  87. Torsney, E., Mandal, K., Halliday, A., Jahangiri, M., & Xu, Q. (2007). Characterisation of progenitor cells in human atherosclerotic vessels. Atherosclerosis, 191, 259–264.

    PubMed  CAS  Google Scholar 

  88. Majesky, M. W. (2007). Developmental basis of vascular smooth muscle diversity. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 1248–1258.

    PubMed  CAS  Google Scholar 

  89. Collett, G. D., & Canfield, A. E. (2005). Angiogenesis and pericytes in the initiation of ectopic calcification. Circulation Research, 96, 930–938.

    PubMed  CAS  Google Scholar 

  90. Psaltis, P. J., Zannettino, A. C., Worthley, S. G., & Gronthos, S. (2008). Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells, 26, 2201–2210.

    PubMed  Google Scholar 

  91. Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18, 696–704.

    PubMed  Google Scholar 

  92. Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., Tagliafico, E., Sacchetti, B., Perani, L., et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 9, 255–267.

    PubMed  CAS  Google Scholar 

  93. Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131, 324–336.

    PubMed  CAS  Google Scholar 

  94. Schwab, K. E., & Gargett, C. E. (2007). Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Human Reproduction, 22, 2903–2911.

    PubMed  CAS  Google Scholar 

  95. Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., Park, T. S., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.

    PubMed  CAS  Google Scholar 

  96. Zannettino, A. C., Paton, S., Arthur, A., Khor, F., Itescu, S., Gimble, J. M., et al. (2008). Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. Journal of Cellular Physiology, 214, 413–421.

    PubMed  CAS  Google Scholar 

  97. Peault, B., Rudnicki, M., Torrente, Y., Cossu, G., Tremblay, J. P., Partridge, T., et al. (2007). Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Molecular Therapy, 15, 867–877.

    PubMed  CAS  Google Scholar 

  98. Dore-Duffy, P., Katychev, A., Wang, X., & Van Buren, E. (2006). CNS microvascular pericytes exhibit multipotential stem cell activity. Journal of Cerebral Blood Flow and Metabolism, 26, 613–624.

    PubMed  CAS  Google Scholar 

  99. Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98, 1076–1084.

    PubMed  CAS  Google Scholar 

  100. Traktuev, D. O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap, W., Pasqualini, R., et al. (2008). A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research, 102, 77–85.

    PubMed  CAS  Google Scholar 

  101. da Silva, M. L., Caplan, A. I., & Nardi, N. B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26, 2287–2299.

    Google Scholar 

  102. Andreeva, E. R., Pugach, I. M., Gordon, D., & Orekhov, A. N. (1998). Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue & Cell, 30, 127–135.

    CAS  Google Scholar 

  103. Howson, K. M., Aplin, A. C., Gelati, M., Alessandri, G., Parati, E. A., & Nicosia, R. F. (2005). The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. American Journal of Physiology. Cell Physiology, 289, C1396–C1407.

    PubMed  CAS  Google Scholar 

  104. Covas, D. T., Piccinato, C. E., Orellana, M. D., Siufi, J. L., Silva, W. A., Jr., Proto-Siqueira, R., et al. (2005). Mesenchymal stem cells can be obtained from the human saphena vein. Experimental Cell Research, 309, 340–344.

    PubMed  CAS  Google Scholar 

  105. Hoshino, A., Chiba, H., Nagai, K., Ishii, G., & Ochiai, A. (2008). Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells. Biochemical and Biophysical Research Communications, 368, 305–310.

    PubMed  CAS  Google Scholar 

  106. Pasquinelli, G., Pacilli, A., Alviano, F., Foroni, L., Ricci, F., Valente, S., et al. (2010). Multidistrict human mesenchymal vascular cells: pluripotency and stemness characteristics. Cytotherapy, 12, 275–287.

    PubMed  CAS  Google Scholar 

  107. Shao, J. S., Cai, J., & Towler, D. A. (2006). Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1423–1430.

    PubMed  CAS  Google Scholar 

  108. Arras, M., Ito, W. D., Scholz, D., Winkler, B., Schaper, J., & Schaper, W. (1998). Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. Journal of Clinical Investigation, 101, 40–50.

    PubMed  CAS  Google Scholar 

  109. Soehnlein, O., & Weber, C. (2009). Myeloid cells in atherosclerosis: initiators and decision shapers. Seminars in Immunopathology, 31, 35–47.

    PubMed  CAS  Google Scholar 

  110. Lessner, S. M., Prado, H. L., Waller, E. K., & Galis, Z. S. (2002). Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. The American Journal of Pathology, 160, 2145–2155.

    PubMed  CAS  Google Scholar 

  111. Khmelewski, E., Becker, A., Meinertz, T., & Ito, W. D. (2004). Tissue resident cells play a dominant role in arteriogenesis and concomitant macrophage accumulation. Circulation Research, 95, E56–E64.

    PubMed  CAS  Google Scholar 

  112. Miyata, K., Shimokawa, H., Kandabashi, T., Higo, T., Morishige, K., Eto, Y., et al. (2000). Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 2351–2358.

    PubMed  CAS  Google Scholar 

  113. Bot, I., de Jager, S. C., Bot, M., van Heiningen, S. H., de Groot, P., Veldhuizen, R. W., et al. (2010). The neuropeptide substance P mediates adventitial mast cell activation and induces intraplaque hemorrhage in advanced atherosclerosis. Circulation Research, 106, 89–92.

    PubMed  CAS  Google Scholar 

  114. Massberg, S., Schaerli, P., Knezevic-Maramica, I., Kollnberger, M., Tubo, N., Moseman, E. A., et al. (2007). Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell, 131, 994–1008.

    PubMed  CAS  Google Scholar 

  115. Garrett, R. W., & Emerson, S. G. (2009). Bone and blood vessels: the hard and the soft of hematopoietic stem cell niches. Cell Stem Cell, 4, 503–506.

    PubMed  CAS  Google Scholar 

  116. Greco, V., & Guo, S. (2010). Compartmentalized organization: a common and required feature of stem cell niches? Development, 137, 1586–1594.

    PubMed  CAS  Google Scholar 

  117. Haimovici, H., & Maier, N. (1964). Fate of aortic homografts in canine atherosclerosis. 3. Study of fresh abdominal and thoracic aortic implants into thoracic aorta: role of tissue susceptibility in atherogenesis. Archives of Surgery, 89, 961–969.

    PubMed  CAS  Google Scholar 

  118. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.

    PubMed  CAS  Google Scholar 

  119. Kirton, J. P., & Xu, Q. (2010). Endothelial precursors in vascular repair. Microvascular Research, 79, 193–199.

    PubMed  CAS  Google Scholar 

  120. Laird, D. J., von Andrian, U. H., & Wagers, A. J. (2008). Stem cell trafficking in tissue development, growth, and disease. Cell, 132, 612–630.

    PubMed  CAS  Google Scholar 

  121. Zernecke, A., Schober, A., Bot, I., von Hundelshausen, P., Liehn, E. A., Mopps, B., et al. (2005). SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circulation Research, 96, 784–791.

    PubMed  CAS  Google Scholar 

  122. Grunewald, M., Avraham, I., Dor, Y., Bachar-Lustig, E., Itin, A., Jung, S., et al. (2006). VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell, 124, 175–189.

    PubMed  CAS  Google Scholar 

  123. Leone, A. M., Valgimigli, M., Giannico, M. B., Zaccone, V., Perfetti, M., D’Amario, D., et al. (2009). From bone marrow to the arterial wall: the ongoing tale of endothelial progenitor cells. European Heart Journal, 30, 890–899.

    PubMed  Google Scholar 

  124. Shintani, S., Murohara, T., Ikeda, H., Ueno, T., Honma, T., Katoh, A., et al. (2001). Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 103, 2776–2779.

    PubMed  CAS  Google Scholar 

  125. Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., et al. (2001). Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circulation Research, 89, E1–E7.

    PubMed  CAS  Google Scholar 

  126. Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. The New England Journal of Medicine, 353, 999–1007.

    PubMed  CAS  Google Scholar 

  127. George, J., Goldstein, E., Abashidze, S., Deutsch, V., Shmilovich, H., Finkelstein, A., et al. (2004). Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. European Heart Journal, 25, 1003–1008.

    PubMed  CAS  Google Scholar 

  128. Thum, T., Tsikas, D., Stein, S., Schultheiss, M., Eigenthaler, M., Anker, S. D., et al. (2005). Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. Journal of the American College of Cardiology, 46, 1693–1701.

    PubMed  CAS  Google Scholar 

  129. Schmidt-Lucke, C., Rossig, L., Fichtlscherer, S., Vasa, M., Britten, M., Kamper, U., et al. (2005). Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation, 111, 2981–2987.

    PubMed  Google Scholar 

  130. Leone, A. M., Rutella, S., Bonanno, G., Abbate, A., Rebuzzi, A. G., Giovannini, S., et al. (2005). Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function. European Heart Journal, 26, 1196–1204.

    PubMed  Google Scholar 

  131. Michowitz, Y., Goldstein, E., Wexler, D., Sheps, D., Keren, G., & George, J. (2007). Circulating endothelial progenitor cells and clinical outcome in patients with congestive heart failure. Heart, 93, 1046–1050.

    PubMed  Google Scholar 

  132. Bonello, L., Basire, A., Sabatier, F., Paganelli, F., & Dignat-George, F. (2006). Endothelial injury induced by coronary angioplasty triggers mobilization of endothelial progenitor cells in patients with stable coronary artery disease. Journal of Thrombosis and Haemostasis, 4, 979–981.

    PubMed  CAS  Google Scholar 

  133. Banerjee, S., Brilakis, E., Zhang, S., Roesle, M., Lindsey, J., Philips, B., et al. (2006). Endothelial progenitor cell mobilization after percutaneous coronary intervention. Atherosclerosis, 189, 70–75.

    PubMed  CAS  Google Scholar 

  134. Padfield, G. J., Newby, D. E., & Mills, N. L. (2010). Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. Journal of the American College of Cardiology, 55, 1553–1565.

    PubMed  Google Scholar 

  135. Gulati, R., Jevremovic, D., Witt, T. A., Kleppe, L. S., Vile, R. G., Lerman, A., et al. (2004). Modulation of the vascular response to injury by autologous blood-derived outgrowth endothelial cells. American Journal of Physiology. Heart and Circulatory Physiology, 287, H512–H517.

    PubMed  CAS  Google Scholar 

  136. Aoki, J., Serruys, P. W., van Beusekom, H., Ong, A. T., McFadden, E. P., Sianos, G., et al. (2005). Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. Journal of the American College of Cardiology, 45, 1574–1579.

    PubMed  CAS  Google Scholar 

  137. George, J., Afek, A., Abashidze, A., Shmilovich, H., Deutsch, V., Kopolovich, J., et al. (2005). Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 2636–2641.

    PubMed  CAS  Google Scholar 

  138. Zoll, J., Fontaine, V., Gourdy, P., Barateau, V., Vilar, J., Leroyer, A., et al. (2008). Role of human smooth muscle cell progenitors in atherosclerotic plaque development and composition. Cardiovascular Research, 77, 471–480.

    PubMed  CAS  Google Scholar 

  139. Bentzon, J. F., Weile, C., Sondergaard, C. S., Hindkjaer, J., Kassem, M., & Falk, E. (2006). Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2696–2702.

    PubMed  CAS  Google Scholar 

  140. Tanaka, K., Sata, M., Hirata, Y., & Nagai, R. (2003). Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circulation Research, 93, 783–790.

    PubMed  CAS  Google Scholar 

  141. Zalewski, A., Shi, Y., & Johnson, A. G. (2002). Diverse origin of intimal cells: smooth muscle cells, myofibroblasts, fibroblasts, and beyond? Circulation Research, 91, 652–655.

    PubMed  CAS  Google Scholar 

  142. Mayr, M., Zampetaki, A., Sidibe, A., Mayr, U., Yin, X., De Souza, A. I., et al. (2008). Proteomic and metabolomic analysis of smooth muscle cells derived from the arterial media and adventitial progenitors of apolipoprotein E-deficient mice. Circulation Research, 102, 1046–1056.

    PubMed  CAS  Google Scholar 

  143. Perlman, H., Maillard, L., Krasinski, K., & Walsh, K. (1997). Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation, 95, 981–987.

    PubMed  CAS  Google Scholar 

  144. Barker, S. G., Tilling, L. C., Miller, G. C., Beesley, J. E., Fleetwood, G., Stavri, G. T., et al. (1994). The adventitia and atherogenesis: removal initiates intimal proliferation in the rabbit which regresses on generation of a ‘neoadventitia’. Atherosclerosis, 105, 131–144.

    PubMed  CAS  Google Scholar 

  145. Langheinrich, A. C., Michniewicz, A., Sedding, D. G., Walker, G., Beighley, P. E., Rau, W. S., et al. (2006). Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E(-/-)/low-density lipoprotein(-/-) double knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 347–352.

    PubMed  CAS  Google Scholar 

  146. He, W., Nieponice, A., Soletti, L., Hong, Y., Gharaibeh, B., Crisan, M., et al. (2010). Pericyte-based human tissue engineered vascular grafts. Biomaterials, 31, 8235–8244.

    PubMed  CAS  Google Scholar 

  147. Siow, R. C., & Churchman, A. T. (2007). Adventitial growth factor signalling and vascular remodelling: potential of perivascular gene transfer from the outside-in. Cardiovascular Research, 75, 659–668.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant funding from the National Institutes of Health (HL75566). Dr Psaltis receives post-doctoral research funding from the National Health and Medical Research Council of Australia and the Royal Australasian College of Physicians. The authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Simari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Psaltis, P.J., Harbuzariu, A., Delacroix, S. et al. Resident Vascular Progenitor Cells—Diverse Origins, Phenotype, and Function. J. of Cardiovasc. Trans. Res. 4, 161–176 (2011). https://doi.org/10.1007/s12265-010-9248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9248-9

Keywords

Navigation