Skip to main content
Log in

Duodenal-Jejunal Bypass Liner to Treat Type 2 Diabetes Mellitus in Morbidly Obese Patients

  • Diabetes and Cardiovascular Disease (S Malik, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Endoscopic placement of the duodenal-jejunal bypass liner (DJBL) in morbidly obese patients induces significant weight loss. Additionally, early studies reported significant improvements in several parameters of glucose homeostasis in morbidly obese patients with T2DM. The observed glycemic control occurred soon after device placement, after a minimal weight loss, suggesting the activation of weight loss-independent anti-diabetic mechanisms of glucose normalization. This effect is associated with favorable changes in hormones involved in glucose level regulation. Recently, larger clinical studies, focused primarily on the effect of the DJBL on T2DM treatment, have corroborated initial observations not only in morbidly obese patients but in non-morbidly obese diabetic patients as well. In this article we review the evidence from preclinical animal and clinical human studies that support the efficacy of DJBL to treat T2DM in obese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP. The continuing epidemics of obesity and diabetes in the United States. JAMA. 2001;286:1195–200.

    Article  CAS  PubMed  Google Scholar 

  2. Gregg EW, Cadwell BL, Cheng YJ, Cowie CC, Williams DE, Geiss L, et al. Trends in the prevalence and ratio of diagnosed to undiagnosed diabetes according to obesity levels in the U.S. Diabetes Care. 2004;27:2806–12.

    Article  PubMed  Google Scholar 

  3. Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA. 2004;291:335–42.

    Article  CAS  PubMed  Google Scholar 

  4. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med. 1999;131:281–303.

    Article  CAS  PubMed  Google Scholar 

  5. Liebl A. Challenges in optimal metabolic control of diabetes. Diabetes Metab Res Rev. 2002;18 Suppl 3:S36–41.

    Article  PubMed  Google Scholar 

  6. Evans A, Krentz AJ. Benefits and risks of transfer from oral agents to insulin in type 2 diabetes mellitus. Drug Saf. 1999;21:7–22.

    Article  CAS  PubMed  Google Scholar 

  7. Hoerger TJ, Segel JE, Gregg EW, Saaddine JB. Is glycemic control improving in U.S. adults? Diabetes Care. 2008;31:81–6.

    Article  PubMed  Google Scholar 

  8. Hoerger TJ, Zhang P, Segel JE, Gregg EW, Narayan KM, Hicks KA. Improvements in risk factor control among persons with diabetes in the United States: evidence and implications for remaining life expectancy. Diabetes Res Clin Pract. 2009;86:225–32.

    Article  PubMed  Google Scholar 

  9. Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122:248–256 e5.

    Article  PubMed  Google Scholar 

  10. Standards of medical care in diabetes–2009. Diabetes Care 2009;32 Suppl 1:S13–61.

  11. Rubino F, Kaplan LM, Schauer PR, Cummings DE. The Diabetes Surgery Summit Consensus Conference: recommendations for the evaluation and use of gastrointestinal surgery to treat type 2 diabetes mellitus. Ann Surg. 2010. doi:10.1097/SLA.0b013e3181be34e7.

    PubMed  Google Scholar 

  12. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg. 2009. doi:10.1007/s11695-009-0014-5.

    Google Scholar 

  13. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76. This randomized controlled trial demostrates the greater glycemic control effect of bariatric surgery compared with intensive medical therapy in non-severely obese T2DM patients.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238:467–84. discussion 84-5.

    PubMed Central  PubMed  Google Scholar 

  15. Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    Article  PubMed  Google Scholar 

  16. Dixon JB, O'Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299:316–23.

    CAS  PubMed  Google Scholar 

  17. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366:1577–85. This randomized controlled trial shows the superiority of BPD and RYGB over conventional medical therapy to achieve diabetes remission.

    Article  CAS  PubMed  Google Scholar 

  18. Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222:339–50. discussion 350-2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wickremesekera K, Miller G, Naotunne TD, Knowles G, Stubbs RS. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg. 2005;15:474–81.

    Article  PubMed  Google Scholar 

  20. Cummings DE. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes (Lond). 2009;33 Suppl 1:S33–40.

    Article  CAS  Google Scholar 

  21. Goldfine AB, Shoelson SE, Aguirre V. Expansion and contraction: treating diabetes with bariatric surgery. Nat Med. 2009;15:616–7.

    Article  CAS  PubMed  Google Scholar 

  22. de Jonge C, Rensen SS, Verdam FJ, Vincent RP, Bloom SR, Buurman WA, et al. Endoscopic duodenal-jejunal bypass liner rapidly improves type 2 diabetes. Obes Surg. 2013. doi:10.1007/s11695-013-0921-3.

    PubMed  Google Scholar 

  23. Cohen RV, Neto MG, Correa JL, Sakai P, Martins B, Schiavon CA, et al. A pilot study of the duodenal-jejunal bypass liner in low body mass index type 2 diabetes. J Clin Endocrinol Metab. 2013;98:E279–82.

    Article  CAS  PubMed  Google Scholar 

  24. Munoz R, Carmody JS, Stylopoulos N, Davis P, Kaplan LM. Isolated duodenal exclusion increases energy expenditure and improves glucose homeostasis in diet-induced obese rats. Am J Physiol Regul Integr Comp Physiol. 2012;303:R985–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Escalona A, Pimentel F, Sharp A, Becerra P, Slako M, Turiel D, et al. Weight loss and metabolic improvement in morbidly obese subjects implanted for 1 year with an endoscopic duodenal-jejunal bypass liner. Ann Surg. 2012;255:1080–5.

    Article  PubMed  Google Scholar 

  26. de Moura EG, Martins BC, Lopes GS, Orso IR, de Oliveira SL, Galvao Neto MP, et al. Metabolic improvements in obese type 2 diabetes subjects implanted for 1 year with an endoscopically deployed duodenal-jejunal bypass liner. Diabetes Technol Ther. 2012;14:183–9.

    Article  PubMed  Google Scholar 

  27. North American Association for the Study of Obesity (NAASO) and the National Heart L, and Blood Institute (NLHBI). The Practical Guide: Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. NIH Publication #00–4084, Oct 2000.

  28. Helmrich SP, Ragland DR, Leung RW, Paffenbarger Jr RS. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med. 1991;325:147–52.

    Article  CAS  PubMed  Google Scholar 

  29. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA. 2003;289:76–9.

    Article  PubMed  Google Scholar 

  30. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173–94.

    Article  CAS  PubMed  Google Scholar 

  31. Friedman JE, Dohm GL, Leggett-Frazier N, Elton CW, Tapscott EB, Pories WP, et al. Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. Effect on muscle glucose transport and glucose transporter GLUT4. J Clin Invest. 1992;89:701–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Del Prato S, Bonadonna RC, Bonora E, Gulli G, Solini A, Shank M, et al. Characterization of cellular defects of insulin action in type 2 (non-insulin-dependent) diabetes mellitus. J Clin Invest. 1993;91:484–94.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Chen KW, Boyko EJ, Bergstrom RW, Leonetti DL, Newell-Morris L, Wahl PW, et al. Earlier appearance of impaired insulin secretion than of visceral adiposity in the pathogenesis of NIDDM. 5-Year follow-up of initially nondiabetic Japanese-American men. Diabetes Care. 1995;18:747–53.

    Article  CAS  PubMed  Google Scholar 

  34. Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17:961–9.

    Article  CAS  PubMed  Google Scholar 

  35. Polonsky KS, Given BD, Van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest. 1988;81:442–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42:1663–72.

    Article  CAS  PubMed  Google Scholar 

  37. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.

    Article  CAS  PubMed  Google Scholar 

  38. Kahn SE. Clinical review 135: the importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab. 2001;86:4047–58.

    CAS  PubMed  Google Scholar 

  39. Chan WB, Tong PC, Chow CC, So WY, Ng MC, Ma RC, et al. The associations of body mass index, C-peptide and metabolic status in Chinese Type 2 diabetic patients. Diabet Med. 2004;21:349–53.

    Article  CAS  PubMed  Google Scholar 

  40. Ng MC, Lee SC, Ko GT, Li JK, So WY, Hashim Y, et al. Familial early-onset type 2 diabetes in Chinese patients: obesity and genetics have more significant roles than autoimmunity. Diabetes Care. 2001;24:663–71.

    Article  CAS  PubMed  Google Scholar 

  41. Chan JC, Ng MC. Lessons learned from young-onset diabetes in China. Curr Diab Rep. 2003;3:101–7.

    Article  PubMed  Google Scholar 

  42. Mohan V, Jaydip R, Deepa R. Type 2 diabetes in Asian Indian youth. Pediatr Diabetes. 2007;8 Suppl 9:28–34.

    Article  PubMed  Google Scholar 

  43. Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006;368:1681–8.

    Article  PubMed  Google Scholar 

  44. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301:2129–40.

    Article  CAS  PubMed  Google Scholar 

  45. Ramachandran A. Epidemiology of diabetes in India–three decades of research. J Assoc Physicians India. 2005;53:34–8.

    CAS  PubMed  Google Scholar 

  46. Nakagami T, Qiao Q, Carstensen B, Nhr-Hansen C, Hu G, Tuomilehto J, et al. Age, body mass index and Type 2 diabetes-associations modified by ethnicity. Diabetologia. 2003;46:1063–70.

    Article  CAS  PubMed  Google Scholar 

  47. Deurenberg P, Deurenberg-Yap M, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev. 2002;3:141–6.

    Article  CAS  PubMed  Google Scholar 

  48. Kuroe A, Fukushima M, Usami M, Ikeda M, Nakai Y, Taniguchi A, et al. Impaired beta-cell function and insulin sensitivity in Japanese subjects with normal glucose tolerance. Diabetes Res Clin Pract. 2003;59:71–7.

    Article  CAS  PubMed  Google Scholar 

  49. Misra A, Chowbey P, Makkar BM, Vikram NK, Wasir JS, Chadha D, et al. Consensus statement for diagnosis of obesity, abdominal obesity and the metabolic syndrome for Asian Indians and recommendations for physical activity, medical and surgical management. J Assoc Physicians India. 2009;57:163–70.

    CAS  PubMed  Google Scholar 

  50. Williamson DF, Thompson TJ, Thun M, Flanders D, Pamuk E, Byers T. Intentional weight loss and mortality among overweight individuals with diabetes. Diabetes Care. 2000;23:1499–504.

    Article  CAS  PubMed  Google Scholar 

  51. Wing RR, Koeske R, Epstein LH, Nowalk MP, Gooding W, Becker D. Long-term effects of modest weight loss in type II diabetic patients. Arch Intern Med. 1987;147:1749–53.

    Article  CAS  PubMed  Google Scholar 

  52. Gregg EW, Chen H, Wagenknecht LE, Clark JM, Delahanty LM, Bantle J, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308:2489–96.

    Article  CAS  PubMed  Google Scholar 

  53. Maggard-Gibbons M, Maglione M, Livhits M, Ewing B, Maher AR, Hu J, et al. Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA. 2013;309:2250–61.

    Article  CAS  PubMed  Google Scholar 

  54. Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244:741–9.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Rubino F, Gagner M, Gentileschi P, Kini S, Fukuyama S, Feng J, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240:236–42.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Vidal J, Ibarzabal A, Romero F, Delgado S, Momblan D, Flores L, et al. Type 2 diabetes mellitus and the metabolic syndrome following sleeve gastrectomy in severely obese subjects. Obes Surg. 2008. doi:10.1007/s11695-008-9547-2.

    Google Scholar 

  57. Moon Han S, Kim WW, Oh JH. Results of laparoscopic sleeve gastrectomy (LSG) at 1 year in morbidly obese Korean patients. Obes Surg. 2005;15:1469–75.

    Article  PubMed  Google Scholar 

  58. Cottam D, Qureshi FG, Mattar SG, Sharma S, Holover S, Bonanomi G, et al. Laparoscopic sleeve gastrectomy as an initial weight-loss procedure for high-risk patients with morbid obesity. Surg Endosc. 2006;20:859–63.

    Article  CAS  PubMed  Google Scholar 

  59. Pories WJ, Albrecht RJ. Etiology of type II diabetes mellitus: role of the foregut. World J Surg. 2001;25:527–31.

    Article  CAS  PubMed  Google Scholar 

  60. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17:819–37.

    Article  CAS  PubMed  Google Scholar 

  61. Bueter M, Lowenstein C, Olbers T, Wang M, Cluny NL, Bloom SR, et al. Gastric bypass increases energy expenditure in rats. Gastroenterology. 2009. doi:10.1053/j.gastro.2009.11.012.

    PubMed  Google Scholar 

  62. Stylopoulos N, Hoppin AG, Kaplan LM. Roux-en-Y gastric bypass enhances energy expenditure and extends lifespan in diet-induced obese rats. Obesity (Silver Spring). 2009. doi:10.1038/oby.2009.207.

    Google Scholar 

  63. Stefater MA, Perez-Tilve D, Chambers AP, Wilson-Perez HE, Sandoval DA, Berger J, et al. Sleeve gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology. 2010;138:2426–36. 2436 e1-3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Werling M, Olbers T, Fandriks L, Bueter M, Lonroth H, Stenlof K, et al. Increased postprandial energy expenditure may explain superior long term weight loss after Roux-en-Y gastric bypass compared to vertical banded gastroplasty. PLoS One. 2013;8:e60280.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Laferrere B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008. doi:10.1210/jc.2007-2851.

    PubMed Central  PubMed  Google Scholar 

  66. Laferrere B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Bose M, Machineni S, Olivan B, Teixeira J, McGinty JJ, Bawa B, et al. Superior appetite hormone profile after equivalent weight loss by gastric bypass compared to gastric banding. Obesity (Silver Spring). 2010;18:1085–91.

    Article  CAS  Google Scholar 

  68. Levine A, Ramos A, Escalona A, Rodriguez L, Greve JW, Janssen I, et al. Radiographic appearance of endoscopic duodenal-jejunal bypass liner for treatment of obesity and type 2 diabetes. Surg Obes Relat Dis. 2009;5:371–4.

    Article  PubMed  Google Scholar 

  69. Rodriguez-Grunert L, Galvao Neto MP, Alamo M, Ramos AC, Baez PB, Tarnoff M. First human experience with endoscopically delivered and retrieved duodenal-jejunal bypass sleeve. Surg Obes Relat Dis. 2008;4:55–9.

    Article  PubMed  Google Scholar 

  70. Tarnoff M, Rodriguez L, Escalona A, Ramos A, Neto M, Alamo M, et al. Open label, prospective, randomized controlled trial of an endoscopic duodenal-jejunal bypass sleeve versus low calorie diet for pre-operative weight loss in bariatric surgery. Surg Endosc. 2009;23:650–6.

    Article  CAS  PubMed  Google Scholar 

  71. Schouten R, Rijs CS, Bouvy ND, Hameeteman W, Koek GH, Janssen IM, et al. A multicenter, randomized efficacy study of the EndoBarrier gastrointestinal liner for presurgical weight loss prior to bariatric surgery. Ann Surg. 2009. doi:10.1097/SLA.0b013e3181bdfbff.

    PubMed  Google Scholar 

  72. Gersin KS, Rothstein RI, Rosenthal RJ, Stefanidis D, Deal SE, Kuwada TS, et al. Open-label, sham-controlled trial of an endoscopic duodenojejunal bypass liner for preoperative weight loss in bariatric surgery candidates. Gastrointest Endosc. 2010;71:976–82.

    Article  PubMed  Google Scholar 

  73. Munoz R, Dominguez A, Munoz F, Munoz C, Slako M, Turiel D, Pimentel F, Sharp A, Escalona A. Baseline glycated hemoglobin levels are associated with duodenal-jejunal bypass liner-induced weight loss in obese patients. Surg Endosc 2013;Nov 7.

  74. Aguirre V, Stylopoulos N, Grinbaum R, Kaplan LM. An endoluminal sleeve induces substancial weight loss and normalizes glucose homeostasis in rats with diet-induced obesity. Obesity. 2008;16:2585–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Schouten R, Rijs CS, Bouvy ND, Hameeteman W, Koek GH, Janssen IM, et al. A multicenter, randomized efficacy study of the EndoBarrier Gastrointestinal Liner for presurgical weight loss prior to bariatric surgery. Ann Surg. 2010;251:236–43.

    Article  PubMed  Google Scholar 

  76. de Moura EG, Orso IR, Martins Bda C, Lopes GS, de Oliveira SL, Galvao-Neto Mdos P, et al. Improvement of insulin resistance and reduction of cardiovascular risk among obese patients with type 2 diabetes with the duodenojejunal bypass liner. Obes Surg. 2011;21:941–7.

    Article  PubMed  Google Scholar 

  77. Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239:1–11.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Patriti A, Facchiano E, Annetti C, Aisa MC, Galli F, Fanelli C, et al. Early improvement of glucose tolerance after ileal transposition in a non-obese type 2 diabetes rat model. Obes Surg. 2005;15:1258–64.

    Article  PubMed  Google Scholar 

  79. Pacheco D, de Luis DA, Romero A, Gonzalez Sagrado M, Conde R, Izaola O, et al. The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto-Kakizaki rats. Am J Surg. 2007;194:221–4.

    Article  CAS  PubMed  Google Scholar 

  80. Wang TT, Hu SY, Gao HD, Zhang GY, Liu CZ, Feng JB, et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg. 2008;247:968–75.

    Article  PubMed  Google Scholar 

  81. Cohen R, Pinheiro JS, Correa JL, Schiavon CA. Laparoscopic Roux-en-Y gastric bypass for BMI < 35 kg/m(2): a tailored approach. Surg Obes Relat Dis. 2006;2:401–4.

    Article  PubMed  Google Scholar 

  82. Lee WJ, Wang W, Lee YC, Huang MT, Ser KH, Chen JC. Effect of laparoscopic mini-gastric bypass for type 2 diabetes mellitus: comparison of BMI>35 and <35 kg/m2. J Gastrointest Surg. 2008;12:945–52.

    Article  PubMed  Google Scholar 

  83. Angrisani L, Favretti F, Furbetta F, Iuppa A, Doldi SB, Paganelli M, et al. Italian Group for Lap-Band System: results of multicenter study on patients with BMI < or =35 kg/m2. Obes Surg. 2004;14:415–8.

    Article  CAS  PubMed  Google Scholar 

  84. Parikh M, Duncombe J, Fielding GA. Laparoscopic adjustable gastric banding for patients with body mass index of <or=35 kg/m2. Surg Obes Relat Dis. 2006;2:518–22.

    Article  CAS  PubMed  Google Scholar 

  85. O'Brien PE, Dixon JB, Laurie C, Skinner S, Proietto J, McNeil J, et al. Treatment of mild to moderate obesity with laparoscopic adjustable gastric banding or an intensive medical program: a randomized trial. Ann Intern Med. 2006;144:625–33.

    Article  PubMed  Google Scholar 

  86. Sultan S, Parikh M, Youn H, Kurian M, Fielding G, Ren C. Early U.S. outcomes after laparoscopic adjustable gastric banding in patients with a body mass index less than 35 kg/m2. Surg Endosc. 2009;23:1569–73.

    Article  PubMed  Google Scholar 

  87. Kakoulidis TP, Karringer A, Gloaguen T, Arvidsson D. Initial results with sleeve gastrectomy for patients with class I obesity (BMI 30-35 kg/m2). Surg Obes Relat Dis. 2009;5:425–8.

    Article  PubMed  Google Scholar 

  88. Cohen RV, Schiavon CA, Pinheiro JS, Correa JL, Rubino F. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22-34 kg/m2: a report of 2 cases. Surg Obes Relat Dis. 2007;3:195–7.

    Article  PubMed  Google Scholar 

  89. Ramos AC, Galvao Neto MP, de Souza YM, Galvao M, Murakami AH, Silva AC, et al. Laparoscopic duodenal-jejunal exclusion in the treatment of type 2 diabetes mellitus in patients with BMI<30 kg/m2 (LBMI). Obes Surg. 2009;19:307–12.

    Article  PubMed  Google Scholar 

  90. Geloneze B, Geloneze SR, Fiori C, Stabe C, Tambascia MA, Chaim EA, et al. Surgery for nonobese type 2 diabetic patients: an interventional study with duodenal-jejunal exclusion. Obes Surg. 2009;19:1077–83.

    Article  PubMed  Google Scholar 

  91. DePaula AL, Macedo AL, Rassi N, Machado CA, Schraibman V, Silva LQ, et al. Laparoscopic treatment of type 2 diabetes mellitus for patients with a body mass index less than 35. Surg Endosc. 2008;22:706–16.

    Article  CAS  PubMed  Google Scholar 

  92. Ferzli GS, Dominique E, Ciaglia M, Bluth MH, Gonzalez A, Fingerhut A. Clinical improvement after duodenojejunal bypass for nonobese type 2 diabetes despite minimal improvement in glycemic homeostasis. World J Surg. 2009;33:972–9.

    Article  CAS  PubMed  Google Scholar 

  93. Boza C, Muñoz R, Gamboa C, Klaassen J, Escalona A, Pérez G, et al. Safety and efficacy of Roux-en-Y gastric bypass in type 2 diabetes mellitus patients with BMI 30-35 kg/mts2. Obes Surg. 2009. doi:10.1007/s11695-011-0463-5.

    Google Scholar 

  94. Shah SS, Todkar JS, Shah PS, Cummings DE. Diabetes remission and reduced cardiovascular risk after gastric bypass in Asian Indians with body mass index <35 kg/m(2). Surg Obes Relat Dis. 2009. doi:10.1016/j.soard.2009.08.009.

    PubMed Central  Google Scholar 

  95. American Diabetes A. Standards of medical care in diabetes–2012. Diabetes Care. 2012;35 Suppl 1:S11–63.

    Google Scholar 

Download references

Acknowledgment

The authors thank Macarena Martinez for the preparation of artwork created for this manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

Rodrigo Muñoz declares that he has no conflict of interest.

Alex Escalona has received a grant, honorarium, and support for travel from GI Dynamics Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Escalona.

Additional information

This article is part of the Topical Collection on Diabetes and Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, R., Escalona, A. Duodenal-Jejunal Bypass Liner to Treat Type 2 Diabetes Mellitus in Morbidly Obese Patients. Curr Cardiol Rep 16, 454 (2014). https://doi.org/10.1007/s11886-013-0454-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0454-3

Keywords

Navigation