Skip to main content
Log in

The role of triglycerides in cardiovascular risk

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Triglycerides’ role in coronary heart disease (CHD) risk assessment has long been debated. Although meta-analyses have suggested that triglycerides are an independent risk factor for CHD, a consensus has emerged that triglycerides more appropriately represent a biomarker of CHD risk rather than an independent risk factor. Ongoing studies will determine whether triglyceride lowering confers additional CHD benefit beyond that attained via low-density lipoprotein (LDL) cholesterol reduction. The American Diabetes Association presently recommends lowering elevated triglycerides as a secondary therapeutic target after LDL cholesterol, whereas other organizations, such as the National Cholesterol Education Program, recommend non-high-density lipoprotein cholesterol as the second priority after attaining the LDL cholesterol goal. However, reducing very high triglycerides (ie, > 500 mg/dL) remains a sufficiently high priority in affected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Lowering Blood Cholesterol to Prevent Heart Disease. NIH Consensus Statement Online [no authors listed]. 1984, 5:1–11. Available at http://consensus.nih.gov/1984/1984Cholesterol047html.htm. Accessed July 29, 2008.

  2. National Cholesterol Education Program: Second Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Bethesda, MD: National Heart, Lung, and Blood Institute, NIH; NIH Publication No. 93-3095; 1993.

    Google Scholar 

  3. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285:2486–2497.

    Article  Google Scholar 

  4. Pocock SJ, Shaper AG, Phillips AN: Concentrations of high density lipoprotein cholesterol, triglycerides, and total cholesterol in ischaemic heart disease. BMJ 1989, 298:998–1002.

    PubMed  CAS  Google Scholar 

  5. Wilson PW, Anderson KM, Castelli WP: Twelve-year incidence of coronary heart disease in middle-aged adults during the era of hypertensive therapy: the Framingham offspring study. Am J Med 1991, 90:11–16.

    Article  PubMed  CAS  Google Scholar 

  6. Grundy SM, Vega GL: Two different views of the relationship of hypertriglyceridemia to coronary heart disease. Implications for treatment. Arch Intern Med 1992, 152:28–34.

    Article  PubMed  CAS  Google Scholar 

  7. Cullen P, von Eckardstein A, Assmann G: Genetic and acquired abnormalities of lipoprotein metabolism. Cardiovasc Risk Factors 1996, 6:99–121.

    Google Scholar 

  8. Cullen P: Evidence that triglycerides are an independent coronary heart disease risk factor. Am J Cardiol 2000, 86:943–949.

    Article  PubMed  CAS  Google Scholar 

  9. Hegele RA: Monogenic dyslipidemias: window on determinants of plasma lipoproteins metabolism. Am J Hum Genet 2001, 69:1161–1171.

    Article  PubMed  CAS  Google Scholar 

  10. Austin MA, McKnight B, Edwards KL, et al.: Cardiovascular disease mortality in familial forms of hypertriglyceridemia: a 20-year prospective study. Circulation 2000, 101:2777–2782.

    PubMed  CAS  Google Scholar 

  11. Yuan G, Al-Shali KZ, Hegele RA: Hypertriglyceridemia: its etiology, effects and treatment. CMAJ 2000, 176:1113–1120.

    Google Scholar 

  12. Walden CC, Hegele RA: Apolipoprotein E in hyperlipidemia. Ann Intern Med 1994, 120:1026–1036.

    PubMed  CAS  Google Scholar 

  13. Pollex RL, Hegele RA: Genetic determinants of the metabolic syndrome. Nat Clin Pract Cardiovasc Med 2006, 3:482–489.

    Article  PubMed  CAS  Google Scholar 

  14. Lemieux I: Hypertriglyceridemic waist: a marker of atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation 2000, 102:179–184.

    PubMed  CAS  Google Scholar 

  15. Pownall HJ: Dietary ethanol is associated with reduced lipolysis of intestinally derived lipoproteins. J Lipid Res 1994, 35:2105–2113.

    PubMed  CAS  Google Scholar 

  16. Rimm EB, Williams P, Fosher K, et al.: Moderate alcohol intake and lower risk of heart disease: meta analysis of effects on lipids and haemostatic factors. BMJ 1999, 319:1523–1528.

    PubMed  CAS  Google Scholar 

  17. Miller M: Current perspectives on the management of hypertriglyceridemia. Am Heart J 2000, 140:232–240.

    Article  PubMed  CAS  Google Scholar 

  18. Rapp RJ: Hypertriglyceridemia: a review beyond low-density lipoprotein. Cardiol Rev 2002, 10:163–172.

    Article  PubMed  Google Scholar 

  19. Lechleitner M, Hoppichler F, Föer B, Patsch JR: Low-density lipoproteins of the post prandial state induce cellular cholesteryl ester accumulation in macrophages. Arterioscler Thromb 1994, 14:1799–1807.

    PubMed  CAS  Google Scholar 

  20. Ooi EM, Barrett PH, Chan DC, Watts GF: Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin Sci (Lond) 2008, 114:611–624.

    Article  CAS  Google Scholar 

  21. Miller M, Ginsberg HN, Schaefer EJ: Relative atherogenicity and predictive value of non-high-density lipoprotein cholesterol for coronary heart disease. Am J Cardiol 2008, 101:1003–1008.

    Article  PubMed  CAS  Google Scholar 

  22. Imke C, Rodriguez BL, Grove JS, et al.: Are remnant-like particles independent predictors of coronary heart disease incidence? The Honolulu Heart study. Arterioscler Thromb Vasc Biol 2005, 25:1718–1722.

    Article  PubMed  CAS  Google Scholar 

  23. Assmann G, Schulte H, Eckardstein AV: Hypertriglyceridemia and elevated lipoprotein (a) are risk factors for major coronary events in middle aged men. Am J Cardiol 1996, 77:1179–1184.

    Article  PubMed  CAS  Google Scholar 

  24. Hokanson JE, Austin MA: Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996, 3:213–219.

    Article  PubMed  CAS  Google Scholar 

  25. Miller M, Seidler A, Moalemi A, Pearson TA: Normal triglyceride levels and coronary artery disease events. The Baltimore Coronary Observational Long-Term Study. J Am Coll Cardiol 1998, 31:1252–1257.

    Article  PubMed  CAS  Google Scholar 

  26. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F: Triglyceride concentration and ischemic heart disease: an eight year follow up in the Copenhagen Male Study. Circulation 1998, 97:1029–1036.

    PubMed  CAS  Google Scholar 

  27. Patel A, Barzi F, Jamrozik K, et al.: Serum triglycerides as a risk factor for cardiovascular diseases in the Asia-Pacific region. Circulation 2004, 110:2678–2686.

    Article  PubMed  CAS  Google Scholar 

  28. Sarwar N, Danesh J, Eiriksdottir G, et al.: Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation 2007, 115:450–458.

    Article  PubMed  CAS  Google Scholar 

  29. Tirosh A, Rudich A, Shochat T, et al.: Changes in triglyceride levels and risk for coronary heart disease in young men. Ann Intern Med 2007, 147:377–385.

    PubMed  Google Scholar 

  30. Miller M, Cannon CP, Murphy SA, et al.: Impact of triglyceride levels beyond low-density cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol 2008, 51:724–730.

    Article  PubMed  CAS  Google Scholar 

  31. U.S. Preventive Services Task Force: Screening for Lipid Disorders in Adults. Released date: June 2008. Available at http://www.ahrq.gov/clinic/uspstf/uspschol.htm. Accessed May 2008.

  32. Nordestgaard BG, Benn M, Schnohr P, Tybjærg-Hansen A: Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007, 298:299–308.

    Article  PubMed  CAS  Google Scholar 

  33. Bansal S, Buring JE, Rifai N, et al.: Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 2007, 298:309–316.

    Article  PubMed  CAS  Google Scholar 

  34. Miller M, Zhan M, Georgopoulos A: Effect of desirable fasting triglycerides on the postprandial response to dietary fat. J Investig Med 2003, 51:50–55.

    Article  PubMed  CAS  Google Scholar 

  35. Brunzell JD, Albers JJ, Chait A: Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res 1983, 24:147–155.

    PubMed  CAS  Google Scholar 

  36. Otvos J: Measurement of triglyceride-rich lipoproteins by nuclear magnetic resonance spectroscopy. Clin Cardiol 1999, 22(6 Suppl):II21–II27.

    PubMed  CAS  Google Scholar 

  37. Dattilo AM, Kris-Etherton PM: Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr 1992, 56:320–328.

    PubMed  CAS  Google Scholar 

  38. Brunzell JD: Clinical practice. Hypertriglyceridemia. N Engl J Med 2007, 357:1009–1017.

    Article  PubMed  CAS  Google Scholar 

  39. Purnell JQ, Kahn SE, Albers JJ, et al.: Effect of weight loss with reduction of intra-abdominal fat on lipid metabolism in older men. J Clin Endocrinol Metab 2000, 85:977–982.

    Article  PubMed  CAS  Google Scholar 

  40. Centers for Disease Control and Prevention (CDC): Prevalence of physical activity, including lifestyle activities among adults-United States, 2000–2001. MMWR Morb Mortal Wkly Rep 2003, 52:764–769.

    Google Scholar 

  41. Haskell WL, Lee IM, Pate RR, et al.: Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116:1081–1093.

    Article  PubMed  Google Scholar 

  42. Szapary PO, Bloedon LT, Foster GD: Physical activity and its effects on lipids. Curr Cardiol Rep 2003, 5:488–492.

    Article  PubMed  Google Scholar 

  43. Lichtenstein AH, Appel LJ, Brands M, et al.: Summary of American Heart Association Diet and Lifestyle Recommendations revision 2006. Arterioscler Thromb Vasc Biol 2006, 26:2186–2191.

    Article  PubMed  CAS  Google Scholar 

  44. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary heart disease: the Bezafibrate Infarction Prevention (BIP) study [no authors listed]. Circulation 2000, 102:21–27.

  45. Manninen V, Tenkanen L, Koskinen P, et al.: Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in Helsinki Heart Study. Implications for treatment. Circulation 1992, 85:37–45.

    PubMed  CAS  Google Scholar 

  46. Grundy SM, Cleeman JI, Merz CN, et al.: Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004, 110:227–239.

    Article  PubMed  Google Scholar 

  47. Canner PL, Berrge KG, Wenger NK, et al.: Fifteen-year mortality in coronary drug project patients: long-term benefit with niacin. J Am Coll Cardiol 1986, 8:1245–1255.

    Article  PubMed  CAS  Google Scholar 

  48. Stein EA, Lane M, Laskarazewski P: Comparison of statins in hypertriglyceridemia. Am J Cardiol 1998, 81:B66–B69.

    Article  Google Scholar 

  49. Grundy SM: Consensus statement: role of therapy with “statins“ in patients with hypertriglyceridemia. Am J Cardiol 1998, 81:B1–B6.

    Article  Google Scholar 

  50. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. GISSI-Prevenzione Investigators [no authors listed]. Lancet 1999, 354:447–455.

  51. Yokoyama M, Origasa H, Matsuzaki M, et al.: Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 2007, 369:1090–1098.

    Article  PubMed  CAS  Google Scholar 

  52. Ginsberg HN, Bonds DE, Lovato LC, et al.: Evolution of the lipid trial protocol of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am J Cardiol 2007, 99:56i–67i.

    Article  PubMed  Google Scholar 

  53. AIM-HIGH Clinical Study: Inclusion criteria and major exclusion criteria. Available at accelerator.axioresearch.com/aim-high/. Accessed June 12, 2008.

  54. Clinical Trial Service Unit & Epidemiological Studies Unit: HPS2-THRIVE Press Release. Available at http://www.ctsu.ox.ac.uk/pressreleases/2006-05-31/hps2-thrive-pressrelease. Accessed June 12, 2008.

  55. Pi-Sunyer FX, Aronne LJ, Heshmati HM, et al.: Effect of rimonabant, a cannabanoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients. RIO-North America: a randomized controlled trial. JAMA 2006, 295:761–775.

    Article  PubMed  CAS  Google Scholar 

  56. Després JP, Golay A, Sjöström L, et al.: Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005, 353:2121–2134.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandotra, P., Miller, M. The role of triglycerides in cardiovascular risk. Curr Cardiol Rep 10, 505–511 (2008). https://doi.org/10.1007/s11886-008-0079-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-008-0079-0

Keywords

Navigation