Skip to main content

Advertisement

Log in

Mechanisms of ischemic brain damage

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Neurologic complications from cerebral ischemia occur frequently following cardiac arrest, as well as in the perioperative period in cardiac surgery. The cellular and molecular mechanisms of cerebral ischemia are complex. This article discusses several important cell death and salvage pathways that are important in experimental cerebral ischemia that may be critical to outcome in clinical brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Bernard SA, Gray TW, Buist MD, et al.: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002, 346:557–563. In a randomized, controlled, blinded trial of induced moderate hypothermia instituted within 2 hours and sustained for 12 hours, this study demonstrates improved survival and functional outcomes following out-of-hospital cardiac arrest.

    Article  PubMed  Google Scholar 

  2. The Hypothermia After Cardiac Arrest Study Group: Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002, 346:549–556. This is a carefully executed randomized, blinded, controlled, multicenter trial demonstrating improved neurologic outcome at 6 months with mild therapeutic hypothermia in patients after cardiac arrest from ventricular fibrillation.

    Article  Google Scholar 

  3. Salazaar JD, Wityk RJ, Grega MA, et al.: Stroke after cardiac surgery: short- and long-term outcomes. Ann Thorac Surg 2001, 72:1195–1201.

    Article  Google Scholar 

  4. Nussmeier NA: A review of risk factors for adverse neurologic outcome after cardiac surgery. J Extra Corpor Technol 2002, 34:4–10.

    PubMed  Google Scholar 

  5. Murkin JM: Etiology and incidence of brain dysfunction after cardiac surgery. J Cardiothorac Vasc Anesth 1999, 13:12–37.

    PubMed  CAS  Google Scholar 

  6. Llinas R, Barbut D, Caplan LR: Neurologic complications of cardiac surgery. Prog Cardiovasc Dis 2000, 43:101–112.

    Article  PubMed  CAS  Google Scholar 

  7. Wityk RJ, Glodsborough MA, Hillis A, et al.: Diffusion- and perfusion-weighted brain magnetic resonance imaging in patients with neurologic complications after cardiac surgery. Arch Neurol 2001, 58:571–576.

    Article  PubMed  CAS  Google Scholar 

  8. Pulsinelli WA: Selective neuronal vulnerability; morphological and molecular characteristics. Prog Brain Res 1995, 63:29–37.

    Article  Google Scholar 

  9. Petito CK, Pulsinelli WA: Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: Possible relationship to abnormalities in neuronal processes. J Cereb Blood Flow Metab 1984, 4:194–205.

    PubMed  CAS  Google Scholar 

  10. Kaplan B, Brint S, Tanabe J, et al.: Temporal thresholds for neocortical infarction in rats subjected to irreversible focal cerebral ischemia. Stroke 1991, 22:1032–1039.

    PubMed  CAS  Google Scholar 

  11. Todd MM, Dunlop BJ, Shapiro HM, et al.: Chadwick HC, Powell HC. Ventricular fibrillation in the cat: a model for global cerebral ischemia. Stroke 1991, 12:808–815.

    Google Scholar 

  12. Koch KA, Jackson DL, Schmiedl M, et al.: Total cerebral ischemia: effect of alterations in arterial PCO2 on cerebral microcirculation. J Cereb Blood Flow Metab 1984, 4:343–349.

    PubMed  CAS  Google Scholar 

  13. Nishijima MK, Koehler RC, Hurn PD, et al.: Postischemic recovery rate of cerebral ATP, phosphocreatine, pH, and evoked potentials. Am J Physiol 1989, 257:H1860-H1870.

    PubMed  CAS  Google Scholar 

  14. Kagstorm E, Smith M-L, Siesjo BK: Local cerebral blood flow in the recovery period following complete cerebral ischemia in the rat. J Cereb Blood Flow Metab 1983, 3:170–182.

    Google Scholar 

  15. Pulsinelli WA, Duffy DE: Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 1983, 40:1500–1503.

    PubMed  CAS  Google Scholar 

  16. Fonnum F: Glutamate: a neurotransmitter in mammalian brain. J Neurochem 1984, 42:1–11.

    Article  PubMed  CAS  Google Scholar 

  17. Koehler RC, Eleff SM, Traystman RJ: Global neuronal ischemia and reperfusion. In Cardiac Arrest: The Science and Practice of Resuscitation Medicine. Edited by Paradis NA, Halperin HR, Nowak RM. Baltimore: Williams & Wilkins; 1996. This is a comprehensive review article highlighting mechanisms of neuronal injury during ischemia and reperfusion based on experimental evidence from animal models of global cerebral ischemia.

    Google Scholar 

  18. Cohen JJ: Overview: Mechanisms of apoptosis. Immunol Today 1993, 14:126–130.

    Article  PubMed  CAS  Google Scholar 

  19. Thompson CB: Apoptosis in the pathogenesis and treatment of disease. Science 1995, 267:1456–1462.

    Article  PubMed  CAS  Google Scholar 

  20. Dirnagl U, Iadecola C, Moskowitz MA: Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999, 22:391–397. This is a comprehensive review highlighting the relevance and importance of excitotoxicity, peri-infarct depolarizations, inflammation, and apoptosis to delayed mechanisms of damage following cerebral ischemia.

    Article  PubMed  CAS  Google Scholar 

  21. Vaux L, Haecker G, Strasser A: An evolutionary perspective on apoptosis. Cell 1994, 76:777–779.

    Article  PubMed  CAS  Google Scholar 

  22. Leist M, Nicotera P: Cell death: apoptosis versus necrosis in Primer on Cerebrovascular Disease. Edited by Welch KMA, Caplan LR, Reis DJ, et al. San Diego: Academic Press; 1997:101–104.

    Google Scholar 

  23. Ankarcrona M, Dypbukt JM, Bonfoco E, et al.: Necrosis and apoptosis elicited by glutamate in cerebellar granule cells: a temporal sequence depending on mitochondrial function. Neuron 1995, 15:961–973.

    Article  PubMed  CAS  Google Scholar 

  24. Rossberg MI, Bhardwaj A, Hurn PD, et al.: Principles of Cerebroprotection in Critical Care Medicine: Perioperative Management. Edited by Murray MJ, Coursin DB, Pearl RG, Rough DS. Philadelphia: Lipincott Williams & Williams; 2002:225–235.

    Google Scholar 

  25. Olney JW: Brain lesion, obesity and other disturbances in mice treated with monosodium glutamate. Science 1969, 164:719–721.

    Article  PubMed  CAS  Google Scholar 

  26. Choi DW: Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988, 1:299–634.

    Article  Google Scholar 

  27. Benveniste H, Drejer J, Schoushoe A, et al.: Elevation of extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 1984, 43:1369–1374.

    Article  PubMed  CAS  Google Scholar 

  28. Choi DW: Excitotoxic cell death. J Neurobiol 1992, 23:1261–1276.

    Article  PubMed  CAS  Google Scholar 

  29. Sommer B, Seeburg PH: Glutamate receptor channels: novel properties and new clones. Trends Pharmacol Sci 1992, 13:291–296.

    Article  PubMed  CAS  Google Scholar 

  30. Choi DW: Methods of antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab Rev 1990, 2:105–147.

    PubMed  CAS  Google Scholar 

  31. Bhardwaj A, Brannan T, Martinez-Tica J, et al.: Ischemia in the dorsal hippocampus is associated with acute release of dopamine and norepinephrine. J Neural Transm 1990, 80:195–201.

    Article  CAS  Google Scholar 

  32. Bhardwaj A, Brannan T, Weinberger J: Pentobarbital inhibits extracellular release of dopamine in the ischemic striatum. J Neural Transm 1990, 82:111–117.

    Article  CAS  Google Scholar 

  33. Slivka A, Brannan TS, Weinberger J, et al.: Increase in extracellular dopamine in the straitum during cerebral ischemia: a study utilizing cerebral microdialysis. J Neurochem 1988, 50:1714–1718.

    Article  PubMed  CAS  Google Scholar 

  34. Globus MY-T, Busto R, Dietrich WD, et al.: Intraischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neurosci Lett 1988, 91:36–40.

    Article  PubMed  CAS  Google Scholar 

  35. Koorn R, Brannan TS, Martinez-Tica J, et al.: Effect of etomidate on in vivo ischemia-induced dopamine release in the corpus striatum of the rat: a study using cerebral microdialysis. Anesth Analg 1994, 78:73–79.

    Article  PubMed  CAS  Google Scholar 

  36. Koorn R, Kahn RA, Martinez-Tica, et al.: Effect of isoflurane and halothane on in vivo ischemia-induced dopamine release in the corpus striatum of the rat: a study utilizing cerebral microdialysis. Anesthesiology 1993, 79:827–835.

    Article  PubMed  CAS  Google Scholar 

  37. Weinberger J, Cohen G, Nieves-Rosa J: Nerve terminal damage in cerebral ischemia: greater susceptibility of catecholamine nerve terminals relative to serotonin nerve terminals. Stroke 1983, 14:986–989.

    PubMed  CAS  Google Scholar 

  38. Weinberger J, Nieves-Rosa J, Cohen G: Nerve terminal damage in cerebral ischemia: protective effect of alpha-methyl-paratyrosine. Stroke 1985, 16:864–870.

    PubMed  CAS  Google Scholar 

  39. Globus MY-T, Ginsberg MD, Dietrich WD, et al.: Subsantia nigra lesion protects against ischemic damage in the striatum. Neurosci Lett 1987, 80:251–256.

    Article  PubMed  CAS  Google Scholar 

  40. Kahn RA, Weinberger J, Brannan T, et al.: Nitric oxide modulates dopamine release during global temporary cerebral ischemia. Anesth Analg 1995, 80:1116–1121.

    Article  PubMed  CAS  Google Scholar 

  41. Dawson TM, Dawson VL, Snyder SH: A novel neuronal messenger in brain: the free radical, nitric oxide. Ann Neurol 1992, 32:297–311.

    Article  PubMed  CAS  Google Scholar 

  42. Dawson TM, Dawson VL: Nitric oxide: actions and pathological roles. Neuroscientist 1995, 1:7–18.

    Article  CAS  Google Scholar 

  43. Samdani AF, Dawson TM, Dawson VL: Nitric oxide synthase in models of focal ischemia. Stroke 1997, 28:1283–1288. This is a comprehensive review article highlighting the physiologic and pathologic role of NO in cerebral ischemia.

    PubMed  CAS  Google Scholar 

  44. Dalkara T, Moskowitz MA: The role of nitric oxide in cerebral Ischemia in Primer on Cerebrovascular Disease. Edited by Welch KMA, Caplan LR, Reis DJ, et al. San Diego: Academic Press; 1997:207–208.

    Google Scholar 

  45. Goto S, Xue R, Sugo N, et al.: Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke 2002, 33:1101–1106. This is an important article demonstrating significant neuroprotection in mice lacking PARP-1, thereby highlighting the importance of this nuclear DNA repair enzyme in the propagation of ischemic neuronal injury.

    Article  PubMed  CAS  Google Scholar 

  46. Dalkara T, Morikawa H, Moskowitz MA, et al.: Blood flowdependent functional recovery in a rat model of cerebral ischemia. Am J Physiol 1994, 267:H678-H683.

    PubMed  CAS  Google Scholar 

  47. Huang Z, Huang PL, Ma J, et al.: Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 1996, 16:981–987.

    Article  PubMed  CAS  Google Scholar 

  48. Huang Z, Huang PL, Panahian N, et al.: Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994, 265:1883–1885.

    Article  PubMed  CAS  Google Scholar 

  49. Alkayed NJ, Goyagi T, Peng X, et al.: Role of P450 Arachidonic acid epoxygenase in ischemic preconditioning in brain. In Pharmacology of Cerebral Ischemia. Edited by Krieglstein J. Stuttgart: Medpharm Scientific Publishers; 2002.

    Google Scholar 

  50. Alkayed NJ, Goyagi T, Joh HD, et al.: Neuroprotection and P450 2C11 upregulation after experimental transient ischemic attack. Stroke 2002, 33:1677–1684.

    Article  PubMed  CAS  Google Scholar 

  51. Alkayed NJ, Birks EK, Narayanan J, et al.: Role of P-450 arachidonic acid epoxygenase in the response of cerebral blood flow to glutamate in rats. Stroke 1997, 28:1066–1072.

    PubMed  CAS  Google Scholar 

  52. Alkayed NJ, Birks EK, Hudetz AG, et al.: Inhibition of brain P- 450 arachidonic acid epoxygenase decreases baseline cerebral blood flow. Am J Physiol 1996, 271:H1541-H1546.

    PubMed  CAS  Google Scholar 

  53. Harder DR, Alkayed NJ, Lange AR, et al.: Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites. Stroke 1998, 29:229–234.

    PubMed  CAS  Google Scholar 

  54. Busto R, Dietrich WD, Globus MYT, et al.: Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 1987, 7:729–738.

    PubMed  CAS  Google Scholar 

  55. Zhao O, Memezawa H, Smith ML, et al.: Hyperthermia complicates middle cerebral artery occlusion induced by an intraluminal filament. Brain Res 1994, 649:253–259.

    Article  PubMed  CAS  Google Scholar 

  56. Minamisawa H, Smith ML, Siesjo BK: The effect of mild hyperthermia and hypothermia on brain damage following 5, 10 and 15 min of forebrain ischemia. Ann Neurol 1990, 28:26–33.

    Article  PubMed  CAS  Google Scholar 

  57. Fried RL, Nowak TS: Opioid peptide levels in gerbil brain after transient ischemia: Lasting depletion of hippocampal dynorphin. Stroke 1987, 18:765–770.

    PubMed  CAS  Google Scholar 

  58. Zabramski JM, Spetzler RF, Selman WR, et al.: Nalaxone therapy during focal cerebral ischemia evaluation in a primate model. Stroke 1984, 15:621–627.

    PubMed  CAS  Google Scholar 

  59. Tang AH: Protection from cerebral ischemia by U-50,488E, a specific kappa opioid analgesic agent. Life Sci 1985, 37:1475–1482.

    Article  PubMed  CAS  Google Scholar 

  60. Mackay KB, Kusomoto K, Graham DI, et al.: Effect of kappa-1 opioid agonist CI-977 on ischemic brain damage and cerebral blood flow after middle cerebral artery occlusion in the rat. Brain Res 1993, 629:10–18.

    Article  PubMed  CAS  Google Scholar 

  61. Baskin DS, Widmayer MA, Browning JL, et al.: Evaluation of delayed treatment of focal cerebral ischemia with three selective kappa-opioid agonists in cats. Stroke 1994, 25:2047–2054.

    PubMed  CAS  Google Scholar 

  62. Boutin H, Dauphin F, MacKenzie ET, et al.: Differential timecourse decreases in nonselective mu-, delta-, and kappa-opioid receptors after focal cerebral ischemia in mice. Stroke 1999, 30:1271–1277.

    PubMed  CAS  Google Scholar 

  63. Bradford HF, Crowder JM, White EJ: Inhibitory actions of opioid compounds on calcium fluxes and neurotransmitter release from mammalian cerebral cortical slices. Br J Pharmac 1986, 88:87–93.

    CAS  Google Scholar 

  64. Xiang J-Z, Adamson P, Brammer MJ, et al.: The -opiate agonist U50488H decreases the entry of 45Ca into rat cortical synaptosomes by inhibiting N-but not L-type calcium channels. Neuropharmacology 1990, 29:439.

    Article  PubMed  CAS  Google Scholar 

  65. Clark WM, Raps EC, Tong DC, et al.: for the Cervene Stroke Study Investigators. Cervene (Nalmefene) in acute ischemic stroke. Final results of a phase III efficacy study. Stroke 2000, 31:1234–1239.

    PubMed  CAS  Google Scholar 

  66. Vu TH, Weissmann AD, London ED: Pharmacological characteristics and distribution of s- and phencyclidine receptors in the animal kingdom. J Neurochem 1990, 54:598–604.

    Article  PubMed  CAS  Google Scholar 

  67. Su T-P, London ED, Jaffe JH: Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science 1988, 240:219–221.

    Article  PubMed  CAS  Google Scholar 

  68. Hanner M, Moebius FF, Flandorfer A, et al.: Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci U S A 1996, 93:8072–8077.

    Article  PubMed  CAS  Google Scholar 

  69. Su T-P: Delineating biochemical and functional properties of sigma receptors: Emerging concepts. Crit Rev Neurobiol 1993, 7:187–203.

    PubMed  CAS  Google Scholar 

  70. Leitner ML, Hohmann AG, Patrick SL, et al.: Regional variation in the ratio of s1 to s2 binding in rat brain. Eur J Pharmacol 1994, 259:65–69.

    Article  PubMed  CAS  Google Scholar 

  71. Contreras PC, Gray NM, Ragan DM, et al.: BMY-14802 protects against ischemia-induced neuronal damage in the gerbil. Life Sci 1992, 51:1145–1149.

    Article  PubMed  CAS  Google Scholar 

  72. Goyagi T, Goto S, Bhardwaj A, et al.: Neuroprotective effect of s1-receptor ligand, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is linked to reduced neuronal nitric oxide production. Stroke 2001, 32:1613–1620.

    PubMed  CAS  Google Scholar 

  73. Loihl AK, Asensio V, Campbell IL, et al.: Expression of nitric oxide synthase (NOS)-2 following permanent focal ischemia and the role of nitric oxide in infarct generation in male, female and NOS-2 gene deficient mice. Brain Res 1999, 830:155–164.

    Article  PubMed  CAS  Google Scholar 

  74. Sampei K, Mandir AS, Asano Y, et al.: Stroke Outcome in Double Mutant Antioxidant Transgenics. Stroke 2000, 31:2685–2691.

    PubMed  CAS  Google Scholar 

  75. Hurn PD, Macrae IM: Estrogen as Neuroprotectant in Stroke. J Cereb Blood Flow Metab 2000, 20:631–652.

    Article  PubMed  CAS  Google Scholar 

  76. Garcia-Segura LM, Azcoitia I, DonCarlos LL: Neuroprotection by estradiol. Prog Neurobiol 2001, 63:29–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhardwaj, A., Alkayed, N.J., Kirsch, J.R. et al. Mechanisms of ischemic brain damage. Curr Cardiol Rep 5, 160–167 (2003). https://doi.org/10.1007/s11886-003-0085-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-003-0085-1

Keywords

Navigation