Skip to main content
Log in

Natriuretic peptides in the pathophysiology of congestive heart failure

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

A hallmark of congestive heart failure (CHF) is the activation of the cardiac endocrine system, in particular atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). The natriuretic peptides are a group of structurally similar but genetically distinct peptides that have diverse actions in cardiovascular, renal, and endocrine homeostasis. ANP and BNP are of myocardial cell origin and C-type natriuretic peptide (CNP) is of endothelial origin. ANP and BNP bind to the natriuretic peptide-A receptor (NPR-A), which, via 3',5'-cyclic guanosine monophosphate (cGMP), mediates natriuresis, vasodilatation, renin inhibition, antimitogenesis, and lusitropic properties. CNP lacks natriuretic actions but possesses vasodilating and growth inhibiting actions via the guanylyl cyclase-linked natriuretic peptide-B receptor. All three peptides are cleared by the natriuretic peptide-C receptor and degraded by the ectoenzyme neutral endopeptidase 24.11, both of which are widely expressed in kidney, lung, and vascular wall. Recently, a fourth member of the natriuretic peptide, Dendroaspis natriuretic peptide (DNP) has been reported to be present in human plasma and atrial myocardium and is elevated in plasma of human CHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. De Bold A, Borenstein HB, Veress AT, Sonnenberg H: A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 1981, 28:89–94.

    Article  PubMed  Google Scholar 

  2. Yasue H, Yoshimura M, Sumida H, et al.: Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 1994, 90:195–203.

    PubMed  CAS  Google Scholar 

  3. Stingo AJ, Clavell AL, Heublein DM, et al.: Presence of C-type natriuretic peptide in cultured human endothelial calls and plasma. Am J Physiol 1992, 263:H1318-H1321.

    PubMed  CAS  Google Scholar 

  4. Koller KJ, Goeddel DV: Molecular biology of the natriuretic peptides and their receptors. Circulation 1992, 86:1081–1088.

    PubMed  CAS  Google Scholar 

  5. Burnett JC Jr, Granger JP, Opgenorth TJ: Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol 1984, 247:F863-F866.

    PubMed  CAS  Google Scholar 

  6. Yamamoto K, Burnett JCJ, Redfield MM: Effects of the endogenous natriuretic peptide system on ventricular and coronary function in the failing heart. Am J Physiol 1997, 273:H2406-H2414l.

    PubMed  CAS  Google Scholar 

  7. Itoh H, Pratt RE, Dzau VJ: Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J Clin Invest 1990, 86:1690–1697.

    PubMed  CAS  Google Scholar 

  8. Furuya M, Aisaka K, Miyazaki T, et al.: C-type natriuretic peptide inhibits intimal thickening after vascular injury. Biochem Biophy Res Commun 1993, 193:248–253.

    Article  CAS  Google Scholar 

  9. Maack T, Suzuki M, Almeida FA, et al.: Physiological role of silent receptors of atrila natriuretic factor. Science 1987, 238:675–678.

    Article  PubMed  CAS  Google Scholar 

  10. Kenny AJ, Stephenson SL: Role of endopeptidase-24.11 in the inactivation of atrial natriuretic peptide. FEBS Lett 1988, 232:1–8.

    Article  PubMed  CAS  Google Scholar 

  11. Shima M, Seine Y, Torikai S, Imai M: Intrarenal localization of degradation of atrial natriuretic peptide in isolated glomeruli and cortical nephron segments. Life Sci 1998, 43:357–363.

    Article  Google Scholar 

  12. Schweitz H, Vigne P, Moinier D, et al.: A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J Biol Chem 1992, 267:13928–13932.

    PubMed  CAS  Google Scholar 

  13. Lisy O, Jougasaki M, Heublein DM, et al.: Renal actions of synthetic Dendroaspis natriuretic peptide. Kidney Int 1999, 56:502–508. This is the first report of the renal actions of synthetic Dendroaspis natriuretic peptide.

    Article  PubMed  CAS  Google Scholar 

  14. Schirger JA, Heublein DM, Chen HH, et al.: Presence of Dendroaspis natriuretic peptide-like immunoreactivity in human plasma and its increase during human heart failure. Mayo Clin Proc 1999, 74:126–130. This is the first report of DNP-like immunoreactivity in human plasma.

    Article  PubMed  CAS  Google Scholar 

  15. Burnett JC Jr, Kao PC, Hu DC, et al.: Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 1986, 231:1145–1147.

    Article  PubMed  Google Scholar 

  16. Thibault G, Doubell AL, Garcia R, et al.: Endothelin-stimulated secretion of natriuretic peptides by rat atrial myocytes is mediated by endothelin A receptors. J Clin Invest 1994, 74:460–470.

    CAS  Google Scholar 

  17. Luchner A, Stevens TL, Borgeson DD, et al.: Differential atrial and ventricular expression of myocardial BNP during evolution of heart failure. Am J Physiol 1998, 274:H1684-H1689. This is the first report to describe the differential expression of myocardial BNP in early heart failure and severe heart failure.

    PubMed  CAS  Google Scholar 

  18. Izumo S, Nakal-Ginard B, Mahdavi V: Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A 1988, 85:339–343.

    Article  PubMed  CAS  Google Scholar 

  19. Thibault G, Nemer M, Drounin J, et al.: Ventricles as a major site of atrial natriuretic factor synthesis and release in cardiomyopathic hamsters with heart failure. Circ Res 1989, 65:71–82.

    PubMed  CAS  Google Scholar 

  20. Redfield MM, Edwards BS, McGoon MD, et al.: Failure of atrial natriuretic factor to increase with volume expansion in acute and chronic congestive heart failure in the dog. Circulation 1989, 80:651–657.

    PubMed  CAS  Google Scholar 

  21. Volpe M, Tritto C, De Luca N, et al.: Failure of atrial natriuretic factor to increase with saline load in patients with dilated cardiomyopathy and mild heart failure. J Clin Invest 1991, 88:1481–1489.

    PubMed  CAS  Google Scholar 

  22. Marcus LS, Hart D, Packer M, et al.: Hemodynamics and renal excretory effects of human brain natriuretic peptide infusion In patients with congestive heart failure. Circulation 1996, 94:3184–3189.

    PubMed  CAS  Google Scholar 

  23. Hobbs RE, Miller LW, Bott-Silverman C, et al.: Hemodynamics effects of a single intravenous injection of synthetic human brain natriuretic peptide in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1996, 78:896–901.

    Article  PubMed  CAS  Google Scholar 

  24. Clarkson PBM, Wheeldon NM, Macleod C, et al.: Brain natriuretic peptide: effect on left ventricular filling patterns in healthy subjects. Clin Science 1995, 88:159–164.

    CAS  Google Scholar 

  25. John SWN, Krege JH, Oliver PM, et al.: Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 1995, 267:679–681.

    Article  PubMed  CAS  Google Scholar 

  26. Lopez MJ, Wong SKF, Kishimoto I, et al.: Salt-resistant hypertension in mice lacking guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 1995, 378:65–68.

    Article  PubMed  CAS  Google Scholar 

  27. Oliver PM, Fox JE, Kim R, et al.: Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci U S A 1997, 94:14730–14735.

    Article  PubMed  CAS  Google Scholar 

  28. Ramasawmy R, Lu CY, Kok-Sun N, et al.: Insertion/deletion polymorphism within a polyadenylate stretch at the human atrial natriuretic peptide (hANP) gene locus. Hum Genet 1994, 93:355–356.

    Article  PubMed  CAS  Google Scholar 

  29. Tunny TJ, Jonsson JR, Klemm SA, et al.: Association of restriction fragment length polymorphism at the atrial natriuretic peptide gene locus with aldosterone responsiveness to angiotensin in aldosterone-producing adenoma. Biochem Biophys Res Commun 1995, 204:1312–1317.

    Article  Google Scholar 

  30. Francis GS, Benedict C, Johnstone DE, et al.: Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure: a substudy of the studies of left ventricular dysfunction (SOLVD). Circulation 1990, 82:1724–1729.

    PubMed  CAS  Google Scholar 

  31. Redfield MM, Aarhus LL, Wright RS, Burnett JCJ: Cardiorenal and neurohumoral function in a canine model of early left ventricular dysfunction. Circulation 1993, 87:2016–2022.

    PubMed  CAS  Google Scholar 

  32. Stevens TL, Burnett JC Jr., Kinoshita M, et al.: A functional role for endogenous atrial natriuretic peptide in a canine model of early left ventricular dysfunction. J Clin Invest 1995, 95:1101–1108.

    PubMed  CAS  Google Scholar 

  33. Chen HH, Schirger JA, Chau WT, et al.: The renal response to acute neutral endopeptidase inhibition in mild and severe experimental heart failure. Circulation 1999, 100:2443–2449. This study compared the differential renal response to neutral endopeptidase inhibition between early heart failure and severe heart failure.

    PubMed  CAS  Google Scholar 

  34. Scriven TA, Burnett JC Jr: Effects of synthetic atrial natriuretic peptide on renal function and renin release in acute experimental heart failure. Circulation 1985, 72:892–897.

    PubMed  CAS  Google Scholar 

  35. Margulies KB, Heublein DM, Perrella MA, Burnett JC Jr: ANF-mediated renal cGMP generation in congestive heart failure. Am J Physiol 1991, 260:F562-F568.

    PubMed  CAS  Google Scholar 

  36. Redfield MM, Edwards BS, Heublein DM, Burnett JC Jr: Restoration of renal response to atrial natriuretic factor in experimental low-output heart failure. Am J Physiol 1989, 257:R917-R923.

    PubMed  CAS  Google Scholar 

  37. Koepke JP, Di Bona GF: Blunted natriuresis to atrial natriuretic peptide in chronic sodium retaining disorders. Am J Physiol 1987, 252:854–871.

    Google Scholar 

  38. Schiffrin EL: Decreased density of binding sites for atrial natriuretic peptide on platelets of patients with severe congestive heart failure. Clin Sci 1988, 74:213–218.

    PubMed  CAS  Google Scholar 

  39. Cavero PG, Margulies KB, Winaver J, et al.: Cardiorenal actions of neutral endopeptidase inhibition in experimental congestive heart failure. Circulation 1990, 82:196–201.

    PubMed  CAS  Google Scholar 

  40. Luchner A, Stevens TL, Borgeson DD, et al.: Angiotensin II in the evolution of experimental heart failure. Hypertension 1996, 28:472–477.

    PubMed  CAS  Google Scholar 

  41. Abassi ZA, Haramati A, Hoffman A, et al.: Effect of convertingenzyme inhibition on renal response to ANF in rats with experimental heart failure. Am J Physiol 1990, 259:R84-R89.

    PubMed  CAS  Google Scholar 

  42. Showalter CJ, Zimmerman RS, Schwab TR, et al.: Renal response to atrial natriuretic factor is modulated by intrarenal angiotensin II. Am J Physiol 1988, 254:R453-R456.

    PubMed  CAS  Google Scholar 

  43. Smith JB, Lincoln TM: Angiotensin decreases cyclic GMP accumulation produced by atrial natriuretic factor. Am J Physiol 1987, 253:C147-C150.

    PubMed  CAS  Google Scholar 

  44. Wilkins M, Settle SL, Needleman P. Augmentation of the natriuretic activity of exogenous and endogenous atriopeptin in rats by inhibition of guanosine 3',5'-cyclic monophosphate degradation. J Clin Invest 1990, 85:1274–1279.

    Article  PubMed  CAS  Google Scholar 

  45. Supaporn T, Sandberg SM, Borgeson DD, et al.: Blunted cGMP response to agonists and enhanced glomerular cyclic 3' 5'-nucleotide phosphodiesterase activities in experimental congestive heart failure. Kidney Int 1996, 50:1718–1725.

    Article  PubMed  CAS  Google Scholar 

  46. Margulies KB, Burnett JC Jr: Inhibition of cyclic GMP phosphodiesterase augments renal responses to atrial natriuretic factor in congestive heart failure. J Cardiac Failure 1994, 1:71–80.

    Article  CAS  Google Scholar 

  47. Wei CM, Kao PC, Lin JT, et al.: Circulating beta-atrial natriuretic factor in congestive heart failure. Circulation 1993, 88:1016–1020.

    PubMed  CAS  Google Scholar 

  48. Kambayashi Y, Nakajima S, Ueda M, Inouye K: A dicarba analog of beta-atrial natriuretic peptide (beta-ANP) inhibits guanosine 3',5'-cyclic monophosphate production by alpha-ANP in cultured rat vascular smooth muscle cells. FEBS Lett 1989, 248:34–38.

    Article  Google Scholar 

  49. Gottlieb SS, Kukin ML, Ahern D, Packer M: Prognostic importance of atrial natriuretic peptide in patients with chronic heart failure. J Am Coll Cardiol 1989, 13:1534–1539.

    Article  PubMed  CAS  Google Scholar 

  50. Davis KM, Fish LC, Elahi D, et al.: Atrial natriuretic peptide levels in the prediction of congestive heart failure risk in frail elderly. JAMA 1992, 267:2625–2629.

    Article  PubMed  CAS  Google Scholar 

  51. Lerman A, Gibbons RJ, Rodeheffer RJ, et al.: Circulating N-terminal atrial natriuretic peptide as a marker for symptomless left-ventricular dysfunction. Lancet 1993, 341:1105–1109.

    Article  PubMed  CAS  Google Scholar 

  52. Hall C, Rouleau JL, Moye L, et al.: N-terminal proatrial natriuretic factor. An independent predictor of long term prognosis after myocardial infarction. Circulation 1994, 89:1934–1942.

    PubMed  CAS  Google Scholar 

  53. Davis M, Espiner EA, Richard G, et al.: Plasma brain natriuretic peptide in assessment of acute dyspnoea. Lancet 1994, 343:440–444.

    Article  PubMed  CAS  Google Scholar 

  54. Motwani JG, McAlpine H, Kennedy N, Struthers AD: Plasma brain natriuretic peptide as an indicator for angiotensinconverting-enzyme inhibition after myocardial infarction. Lancet 1993, 341:1109–1113.

    Article  PubMed  CAS  Google Scholar 

  55. Richards AM, Nicholls MG, Yandle TG, et al.: Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin. New neurohormonal predictors of left ventricular dysfunction and prognosis after myocardial infarction. Circulation 1998, 97:1921–1929. This is a key study defining the role of pro-BNP as a prognostic marker after myocardial infarction.

    PubMed  CAS  Google Scholar 

  56. Yamamoto K, Burnett JCJ, Jougasaki M, et al.: Superiority of brain natriuretic peptide as hormonal marker of ventricular systolic and diastolic dysfunction and ventricular hypertrophy. Hypertension 1996, 28:988–994.

    PubMed  CAS  Google Scholar 

  57. McDonagh TA, Robb SD, Murdoch DR, et al.: Biochemical detection of left-ventricular systolic dysfunction. Lancet 1998, 351:9–13. This study describes the use of plasma BNP levels as a biochemical marker to detect left ventricular dysfunction.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H.H., Burnett, J.C. Natriuretic peptides in the pathophysiology of congestive heart failure. Curr Cardiol Rep 2, 198–205 (2000). https://doi.org/10.1007/s11886-000-0069-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-000-0069-3

Keywords

Navigation