Skip to main content
Log in

What Causes Premature Coronary Artery Disease?

  • Review
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review provides an overview of genetic and non-genetic causes of premature coronary artery disease (pCAD).

Recent Findings

pCAD refers to coronary artery disease (CAD) occurring before the age of 65 years in women and 55 years in men. Both genetic and non-genetic risk factors may contribute to the onset of pCAD. Recent advances in the genetic epidemiology of pCAD have revealed the importance of both monogenic and polygenic contributions to pCAD. Familial hypercholesterolemia (FH) is the most common monogenic disorder associated with atherosclerotic pCAD. However, clinical overreliance on monogenic genes can result in overlooked genetic causes of pCAD, especially polygenic contributions. Non-genetic factors, notably smoking and drug use, are also important contributors to pCAD. Cigarette smoking has been observed in 25.5% of pCAD patients relative to 12.2% of non-pCAD patients. Finally, myocardial infarction (MI) associated with spontaneous coronary artery dissection (SCAD) may result in similar clinical presentations as atherosclerotic pCAD.

Summary

Recognizing the genetic and non-genetic causes underlying pCAD is important for appropriate prevention and treatment. Despite recent progress, pCAD remains incompletely understood, highlighting the need for both awareness and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 385(9963):117–171

  2. Khera AV, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019;234(10):16812–23.

    Article  CAS  PubMed  Google Scholar 

  4. Thygesen K, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138(20):e618–51.

    Article  PubMed  Google Scholar 

  5. Arnett DK et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019 https://doi.org/10.1161/CIR.0000000000000678

  6. Wilmot KA, O’Flaherty M, Capewell S, Ford ES, Vaccarino V. Coronary heart disease mortality declines in the United States from 1979 through 2011: evidence for stagnation in young adults, especially women. Circulation. 2015;132(11):997–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zheng ZJ, Croft JB, Giles WH, Mensah GA. Sudden cardiac death in the United States, 1989 to 1998. Circulation. 2001;104(18):2158–63.

    Article  CAS  PubMed  Google Scholar 

  8. Pejic RN. Familial hypercholesterolemia. Ochsner J. 2014;14(4)669-672

  9. Ison HE, Clarke SL, and Knowles JW. Familial hypercholesterolemia. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, and Amemiya A, Editors. GeneReviews, Seattle (WA): University of Washington, Seattle, 2014

  10. Vallejo-Vaz AJ, et al. Global perspective of familial hypercholesterolaemia: a cross-sectional study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Lancet. 2021;398(10312):1713–25.

    Article  CAS  Google Scholar 

  11. Albiero R, Seresini G. Atherosclerotic spontaneous coronary artery dissection (A-SCAD) in a patient with COVID-19: case report and possible mechanisms. Eur Heart J Case Rep. 2020;4(FI1):1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klarin D, Natarajan P. Clinical utility of polygenic risk scores for coronary artery disease. Nat Rev Cardiol. 2021;19(5):291–301.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lali R, Cui E, Ansarikaleibari A, Pigeyre M, Paré G. Genetics of early-onset coronary artery disease: from discovery to clinical translation. Curr Opin Cardiol. 2019;34(6):706–13.

    Article  PubMed  Google Scholar 

  14. Zdravkovic S, Wienke A, Pedersen NL, Marenberg ME, Yashin AI, De Faire U. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J Intern Med. 2002;252(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  15. Di Scipio M, et al. A versatile, fast and unbiased method for estimation of gene-by-environment interaction effects on biobank-scale datasets. Nat Commun. 2023;14(1):5196.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18(6):331–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sayols-Baixeras S, Lluís-Ganella C, Lucas G, Elosua R. Pathogenesis of coronary artery disease: focus on genetic risk factors and identification of genetic variants. Appl Clin Genet. 2014;7:15–32.

    PubMed  PubMed Central  Google Scholar 

  18. Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med. 1994;330(15):1041–6.

    Article  CAS  PubMed  Google Scholar 

  19. Scheuner MT, Whitworth WC, McGruder H, Yoon PW, Khoury MJ. Familial risk assessment for early-onset coronary heart disease. Genet Med. 2006;8(8):525–31.

    Article  PubMed  Google Scholar 

  20. Scheuner MT, Whitworth WC, McGruder H, Yoon PW, Khoury MJ. Expanding the definition of a positive family history for early-onset coronary heart disease. Genet Med. 2006;8(8):491–501.

    Article  PubMed  Google Scholar 

  21. Genetic Alliance and New York-Mid-Atlantic Consortium for Genetic and Newborn Screening Services, Understanding genetics: a New York, mid-Atlantic guide for patients and health professionals. Lulu.com, 2009

  22. Hu P et al. Prevalence of familial hypercholesterolemia among the general population and patients with atherosclerotic cardiovascular disease Circulation. 2020. https://doi.org/10.1161/CIRCULATIONAHA.119.044795. This work reassessed the global prevalence of familial hypercholesterolemia through systematic review and meta-analysis, after observing previous estimates likely underreported the disease. The current overall global prevalence is reported to be 1:311.

  23. Shah AS and Wilson DP. Genetic disorders causing hypertriglyceridemia in children and adolescents. MDText.com, Inc., 2023

  24. Goyal A, Cusick AS, and Reilly E. Familial hypertriglyceridemia. StatPearls Publishing, 2023

  25. de Beer F, et al. Expression of type III hyperlipoproteinemia in apolipoprotein E2 (Arg158 –> Cys) homozygotes is associated with hyperinsulinemia. Arterioscler Thromb Vasc Biol. 2002;22(2):294–9.

    Article  PubMed  Google Scholar 

  26. Myrie SB, Steiner RD, Mymin D. Sitosterolemia. Seattle: University of Washington; 2020.

    Google Scholar 

  27. Alshaikhli A and Vaqar S. Tangier disease. StatPearls Publishing, 2023

  28. Burnett JR, Hooper AJ, McCormick SPA, Hegele RA. Tangier Disease. Seattle: University of Washington; 2019.

    Google Scholar 

  29. Faeh D, Chiolero A, Paccaud F. Homocysteine as a risk factor for cardiovascular disease: should we (still) worry about? Swiss Med Wkly. 2006;136(47–48):745–56.

    CAS  PubMed  Google Scholar 

  30. Alrefaei AF, Abu-Elmagd M. LRP6 receptor plays essential functions in development and human diseases. Genes. 2022;13(1):120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh R, et al. Rare nonconservative LRP6 mutations are associated with metabolic syndrome. Hum Mutat. 2013;34(9):1221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mani A, et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science. 2007;315(5816):1278–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu Y, et al. Functional analysis LRP6 novel mutations in patients with coronary artery disease. PLoS ONE. 2014;9(1):e84345.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Srivastava R, Zhang J, Go G-W, Narayanan A, Nottoli TP, Mani A. Impaired LRP6-TCF7L2 activity enhances smooth muscle cell plasticity and causes coronary artery disease. Cell Rep. 2015;13(4):746–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morris CA. Williams syndrome. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, and Amemiya A, Editors., GeneReviews®. Seattle (WA): University of Washington, Seattle; 1999.

  36. Dadlani GH, et al. Cardiovascular screening in Williams syndrome. Prog Pediatr Cardiol. 2020;58:101267.

    Article  Google Scholar 

  37. Sickles CK and Gross GP. Progeria. StatPearls Publishing; 2022

  38. Gordon LB, Ted Brown W, and Collins FS. Hutchinson-Gilford progeria syndrome. University of Washington, Seattle; 2019

  39. Olive M, et al. Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol. 2010;30(11):2301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prakash A, et al. Cardiac abnormalities in patients with Hutchinson-Gilford progeria syndrome. JAMA Cardiol. 2018;3(4):326–34.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Germain DP. Pseudoxanthoma elasticum. Orphanet J Rare Dis. 2017;12(1):1–13.

    Article  Google Scholar 

  42. G. Lefthériotis et al. The vascular phenotype in Pseudoxanthoma elasticum and related disorders: contribution of a genetic disease to the understanding of vascular calcification. Front Genet. 2013;4. https://doi.org/10.3389/fgene.2013.00004.

  43. Vikulova DN, Trinder M, Mancini GBJ, Pimstone SN, Brunham LR. Familial hypercholesterolemia, familial combined hyperlipidemia, and elevated lipoprotein(a) in patients with premature coronary artery disease. Can J Cardiol. 2021;37(11):1733–42.

    Article  PubMed  Google Scholar 

  44. Gratton J, Humphries SE, Futema M. Prevalence of FH-causing variants and impact on LDL-C concentration in European, South Asian, and African Ancestry groups of the UK Biobank-brief report. Arterioscler Thromb Vasc Biol. 2023;43(9):1737–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Toft-Nielsen F, Emanuelsson F, Benn M. Familial hypercholesterolemia prevalence among ethnicities-systematic review and meta-analysis. Front Genet. 2022;13:840797.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Alnouri F et al. Xanthomas can be misdiagnosed and mistreated in homozygous familial hypercholesterolemia patients: a call for increased awareness among dermatologists and health care practitioners. Glob Heart. 2020;15(1). https://doi.org/10.5334/gh.759

  47. Civeira F, et al. Tendon xanthomas in familial hypercholesterolemia are associated with cardiovascular risk independently of the low-density lipoprotein receptor gene mutation. Arterioscler Thromb Vasc Biol. 2005. https://doi.org/10.1161/01.ATV.0000177811.14176.2b.

    Article  PubMed  Google Scholar 

  48. Bell A and Shreenath AP. Xanthoma. In: StatPearls, StatPearls Publishing, 2022

  49. Brunham LR, et al. Canadian cardiovascular society position statement on familial hypercholesterolemia: Update 2018. Can J Cardiol. 2018;34(12):1553–63.

    Article  PubMed  Google Scholar 

  50. Abul-Husn NS et al. Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science. 2016. https://doi.org/10.1126/science.aaf7000

  51. Sharifi M, Futema M, Nair D, Humphries SE. Genetic architecture of familial hypercholesterolaemia. Curr Cardiol Rep. 2017;19(5):44.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Abifadel M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6.

    Article  CAS  PubMed  Google Scholar 

  53. Garcia CK, et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science. 2001;292(5520):1394–8.

    Article  CAS  PubMed  Google Scholar 

  54. Berge KE, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290(5497):1771–5.

    Article  CAS  PubMed  Google Scholar 

  55. Khera AV, et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016;67(22):2578–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reiner Ž. Hypertriglyceridaemia and risk of coronary artery disease. Nat Rev Cardiol. 2017;14(7):401–11.

    Article  CAS  PubMed  Google Scholar 

  57. Berglund L, et al. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice Guideline. J Clin Endocrinol Metab. 2012;97(9):2969–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Santamarina-Fojo S. The familial hyperchylomicronemia syndrome. JAMA. 1991;265(7):904.

    Article  CAS  PubMed  Google Scholar 

  59. Hulley SB, Rosenman RH, Bawol RD, Brand RJ. Epidemiology as a guide to clinical decisions. The association between triglyceride and coronary heart disease. N Engl J Med. 1980;302(25):1383–9.

    Article  CAS  PubMed  Google Scholar 

  60. Gotto AM Jr. Triglyceride as a risk factor for coronary artery disease. Am J Cardiol. 1998;82(9A):22Q-25Q.

    Article  PubMed  Google Scholar 

  61. Pradhan AD et al. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N Engl J Med. 2022.https://doi.org/10.1056/NEJMoa2210645

  62. The AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. 2011. https://doi.org/10.1056/NEJMoa1107579

  63. H. N. Ginsberg et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010; 362(17). https://doi.org/10.1056/NEJMoa1001282

  64. The HPS2-THRIVE Collaborative Group. Effects of extended-release niacin with laropiprant in high-risk patients. 2014. https://doi.org/10.1056/NEJMoa1300955

  65. Musunuru K. Treating coronary artery disease: beyond statins, ezetimibe, and PCSK9 inhibition. Annu Rev Med. 2021; 72. https://doi.org/10.1146/annurev-med-080819-044918

  66. Burgess S and Thompson SG. Mendelian randomization: methods for using genetic variants in causal estimation. CRC Press, 2015

  67. Thomsen M, Varbo A, Tybjærg-Hansen A, Nordestgaard BG. Low nonfasting triglycerides and reduced all-cause mortality: a Mendelian randomization study. Clin Chem. 2014;60(5):737–46.

    Article  CAS  PubMed  Google Scholar 

  68. Holmes MV, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J. 2015;36(9):539–50.

    Article  CAS  PubMed  Google Scholar 

  69. Khera AV, et al. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease. JAMA. 2017;317(9):937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Do R, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518(7537):102–6.

    Article  CAS  PubMed  Google Scholar 

  71. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371(1):32–41.

    Article  PubMed  Google Scholar 

  72. Dewey FE, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374(12):1123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Burnett JR, Hooper AJ, Hegele RA. “Familial lipoprotein lipase deficiency”, in GeneReviews® [Internet]. Seattle: University of Washington; 2017.

    Google Scholar 

  74. Hegele RA. APOC3 interference for familial chylomicronaemia syndrome. touchREV Endocrinol. 2022;18(2)82–83

  75. Gaudet D, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373(5):438–47.

    Article  CAS  PubMed  Google Scholar 

  76. Pechlaner R, et al. Very-low-density lipoprotein-associated apolipoproteins predict cardiovascular events and are lowered by inhibition of APOC-III. J Am Coll Cardiol. 2017;69(7):789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hopkins PN, Wu LL, Hunt SC, Brinton EA. Plasma triglycerides and type III hyperlipidemia are independently associated with premature familial coronary artery disease. J Am Coll Cardiol. 2005;45(7):1003–12.

    Article  CAS  PubMed  Google Scholar 

  78. Bennet AM, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007;298(11):1300–11.

    Article  CAS  PubMed  Google Scholar 

  79. [49] Genetic polymorphism in human apolipoprotein E. In: Methods in Enzymology, Academic Press, 1986, pp. 823–851

  80. Koopal C, David Marais A, Westerink J, and Visseren FLJ. Autosomal dominant familial dysbetalipoproteinemia: a pathophysiological framework and practical approach to diagnosis and therapy. J Clin Lipidol. 2017; 11(1)12–23.e1

  81. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia): questions, quandaries, and paradoxes. J Lipid Res. 1999;40(11)1933–1949

  82. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988;240(4852):622–30.

    Article  CAS  PubMed  Google Scholar 

  83. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res. 1999;40(1)1–16

  84. Roy N, Gaudet D, and Brisson D. Palmar striated xanthomas in clinical practice. J Endocr Soc. 2022; 6(8)bvac103

  85. C. Koopal et al. Vascular risk factors, vascular disease, lipids and lipid targets in patients with familial dysbetalipoproteinemia: a European cross-sectional study. Atherosclerosis. 2015;240(1) https://doi.org/10.1016/j.atherosclerosis.2015.02.046

  86. Villeneuve S, Brisson D, Marchant NL, Gaudet D. The potential applications of apolipoprotein E in personalized medicine. Front Aging Neurosci. 2014;6:154.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Koopal C, Marais AD, Visseren FLJ. Familial dysbetalipoproteinemia: an underdiagnosed lipid disorder. Curr Opin Endocrinol Diabetes Obes. 2017;24(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  88. Tada H, et al. Diagnosis and management of sitosterolemia 2021. J Atheroscler Thromb. 2021;28(8):791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bastida JM, Girós ML, Benito R, Janusz K, Hernández-Rivas JM, González-Porras JR. Sitosterolemia: diagnosis, metabolic and hematological abnormalities, cardiovascular disease and management. Curr Med Chem. 2019;26(37):6766–75.

    Article  CAS  PubMed  Google Scholar 

  90. Pang X, et al. Homocysteine induces the expression of C-reactive protein via NMDAr-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle cells. Atherosclerosis. 2014;236(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  91. Shenoy V, Mehendale V, Prabhu K, Shetty R, Rao P. Correlation of serum homocysteine levels with the severity of coronary artery disease. Indian J Clin Biochem. 2014;29(3):339–44.

    Article  CAS  PubMed  Google Scholar 

  92. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhang S, Bai Y-Y, Luo L-M, Xiao W-K, Wu H-M, Ye P. Association between serum homocysteine and arterial stiffness in elderly: a community-based study. J Geriatr Cardiol. 2014;11(1):32–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Moll S, Varga EA. Homocysteine and MTHFR mutations. Circulation. 2015;132(1):e6-9.

    Article  CAS  PubMed  Google Scholar 

  95. Ebbing M, et al. Mortality and cardiovascular events in patients treated with homocysteine-lowering B vitamins after coronary angiography: a randomized controlled trial. JAMA. 2008;300(7):795–804.

    Article  CAS  PubMed  Google Scholar 

  96. Antoniades C, Antonopoulos AS, Tousoulis D, Marinou K, Stefanadis C. Homocysteine and coronary atherosclerosis: from folate fortification to the recent clinical trials. Eur Heart J. 2009;30(1):6–15.

    Article  CAS  PubMed  Google Scholar 

  97. Bønaa KH, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006;354(15):1578–88.

    Article  PubMed  Google Scholar 

  98. Lonn E, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med. 2006;354(15):1567–77.

    Article  CAS  PubMed  Google Scholar 

  99. Toole JF, et al. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA. 2004;291(5):565–75.

    Article  CAS  PubMed  Google Scholar 

  100. Thériault S, Lali R, Chong M, Velianou JL, Natarajan MK, Paré G. Polygenic contribution in individuals with early-onset coronary artery disease. Circ Genom Precis Med. 2018;11(1):e001849.

    Article  PubMed  Google Scholar 

  101. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467–84.

    Article  CAS  PubMed  Google Scholar 

  102. Zuk O, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci USA. 2014;111(4):E455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Aragam KG, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet. 2022;54(12):1803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Matsunaga H, et al. Transethnic meta-analysis of genome-wide association studies identifies three new loci and characterizes population-specific differences for coronary artery disease. Circ Genom Precis Med. 2020;13(3):e002670.

    Article  CAS  PubMed  Google Scholar 

  105. Samani NJ, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357(5):443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Helgadottir A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–3.

    Article  CAS  PubMed  Google Scholar 

  107. McPherson R, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316(5830):1488–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  Google Scholar 

  109. Almontashiri NAM. The 9p21.3 risk locus for coronary artery disease: a 10-year search for its mechanism. J Taibah Univ Med Sci. 2017;12(3):199–204.

    PubMed  PubMed Central  Google Scholar 

  110. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  CAS  PubMed  Google Scholar 

  111. Zhuang J, et al. Methylation of p15INK4b and expression of ANRIL on chromosome 9p21 are associated with coronary artery disease. PLoS ONE. 2012;7(10):e47193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Musunuru K. Enduring mystery of the chromosome 9p21.3 locus. Circ Cardiovasc Genet. 2013;6(2):224–5.

    Article  PubMed  Google Scholar 

  113. Jarinova O et al. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol. 2009;29(10). https://doi.org/10.1161/ATVBAHA.109.189522

  114. Motterle A et al. Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet. 2012; 21(18). https://doi.org/10.1093/hmg/dds224

  115. Privé F, Arbel J, Aschard H, and Vilhjálmsson B J. Identifying and correcting for misspecifications in GWAS summary statistics and polygenic scores. bioRxiv. 2022;2021.03.29.437510. https://doi.org/10.1101/2021.03.29.437510.

  116. Privé F, Arbel J, Vilhjálmsson BJ. LDpred2: better, faster, stronger. Bioinformatics. 2020;36(22–23):5424–31.

    PubMed Central  Google Scholar 

  117. Jiang X, Holmes C, McVean G. The impact of age on genetic risk for common diseases. PLoS Genet. 2021;17(8):e1009723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Patel AP, et al. A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease. Nat Med. 2023;29(7):1793–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Khera AV, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fahed AC, et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat Commun. 2020;11(1):3635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mars N, et al. Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat Med. Apr.2020;26(4):549–57.

    Article  CAS  PubMed  Google Scholar 

  122. Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J Am Coll Cardiol. 2018;72(16)883–1893

  123. Natarajan P, et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation. 2017;135(22):2091–101.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mega JL, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy. Lancet. 2015;385(9984):2264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014;95(1):5–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lali R, et al. Calibrated rare variant genetic risk scores for complex disease prediction using large exome sequence repositories. Nat Commun. Oct.2021;12(1):1–15. This work was the first to create rare variant polygenic risk scores for prediction of coronary artery disease. Despite the much lower power of rare variants relative to common variants, the rare variant polygenic risk score could identify 1.5% of the population with a greater than two-fold risk of CAD.

    Article  Google Scholar 

  127. Sudlow C, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Uddin MdM et al. Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease. Nat Commun. 2022;13(1). https://doi.org/10.1038/s41467-022-33093-3

  129. Jaiswal S, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377(2):111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Stein A et al. Clonal hematopoiesis and cardiovascular disease: deciphering interconnections. Basic Res Cardiol. 2022;117(1). https://doi.org/10.1007/s00395-022-00969-w

  131. Challen G, Goodell MA. Clonal hematopoiesis: mechanisms driving dominance of stem cell clones. Blood2020. https://doi.org/10.1182/blood.2020006510.10.1182/blood.2020006510

  132. Mayerhofer E, et al. Prevalence and therapeutic implications of clonal hematopoiesis of indeterminate potential in young patients with stroke. Stroke. 2023;54(4):938–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cobo I, Tanaka T, Glass CK, Yeang C. Clonal hematopoiesis driven by DNMT3A and TET2 mutations: role in monocyte and macrophage biology and atherosclerotic cardiovascular disease. Curr Opin Hematol. 2022;29(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  134. Marnell CS, Bick A, Natarajan P. Clonal hematopoiesis of indeterminate potential (CHIP): linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J Mol Cell Cardiol. 2021;161:98–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gumuser ED, et al. Clonal hematopoiesis of indeterminate potential predicts adverse outcomes in patients with atherosclerotic cardiovascular disease. J Am Coll Cardiol. 2023;81(20):1996–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kar SP, et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat Genet. 2022;54(8):1155–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nikpay M, et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cole JH, Miller JI 3rd, Sperling LS, Weintraub WS. Long-term follow-up of coronary artery disease presenting in young adults. J Am Coll Cardiol. 2003;41(4):521–8.

    Article  PubMed  Google Scholar 

  139. Navas-Nacher EL, Colangelo L, Beam C, Greenland P. Risk factors for coronary heart disease in men 18 to 39 years of age. Ann Intern Med. 2001;134(6):433–9.

    Article  CAS  PubMed  Google Scholar 

  140. Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575–84.

    Article  PubMed  Google Scholar 

  141. Jorge-Galarza E, et al. Control of blood pressure levels in patients with premature coronary artery disease: results from the Genetics of Atherosclerotic Disease study. J Clin Hypertens. 2020;22(7):1253–62.

    Article  Google Scholar 

  142. Poorzand H, et al. Risk factors of premature coronary artery disease in Iran: a systematic review and meta-analysis. Eur J Clin Invest. 2019;49(7):e13124.

    Article  PubMed  Google Scholar 

  143. Malmberg K, Båvenholm P, Hamsten A. Clinical and biochemical factors associated with prognosis after myocardial infarction at a young age. J Am Coll Cardiol. 1994;24(3):592–9.

    Article  CAS  PubMed  Google Scholar 

  144. Maahs DM, et al. Cardiovascular disease risk factors in youth with diabetes mellitus: a scientific statement from the American Heart Association. Circulation. 2014;130(17):1532–58.

    Article  PubMed  Google Scholar 

  145. D’Agostino RB Sr, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–53.

    Article  PubMed  Google Scholar 

  146. Koz C, et al. Conventional and non-conventional coronary risk factors in male premature coronary artery disease patients already having a low Framingham risk score. Acta Cardiol. 2008;63(5):623–8.

    Article  PubMed  Google Scholar 

  147. O’Sullivan JW, Raghavan S, Marquez-Luna C, Luzum JA, Damrauer SM, Ashley EA, O’Donnell CJ, Willer CJ, Natarajan P et al. Polygenic risk scores for cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2022;146(8)e93–e118

  148. Becker DH and Gardner LB. Prevention in clinical practice. Springer Science & Business Media; 2012

  149. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297(6):611–9.

    Article  CAS  PubMed  Google Scholar 

  150. Yusuf S et al. Cardiovascular risk and events in 17 low-, middle-, and high-income countries. 2014. https://doi.org/10.1056/NEJMoa1311890

  151. Woodward M, Brindle P, Tunstall-Pedoe H. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart. 2007;93(2):172.

    Article  PubMed  Google Scholar 

  152. Hippisley-Cox J, Coupland C, and Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357. https://doi.org/10.1136/bmj.j2099

  153. Assmann G, Cullen P, and Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation. 2002;105(3). https://doi.org/10.1161/hc0302.102575

  154. Palmieri L, et al. CUORE project: implementation of the 10-year risk score. Eur J Cardiovasc Prev Rehabil. 2011;18(4):642–9.

    Article  PubMed  Google Scholar 

  155. Sofogianni A, Stalikas N, Antza C, and Tziomalos K. Cardiovascular risk prediction models and scores in the era of personalized medicine. J Pers Med. 2022;12(7) https://doi.org/10.3390/jpm12071180. https://doi.org/10.3390/jpm12071180

  156. DeFilippis AP, et al. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann Intern Med. 2015;162(4):266–75.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zeitouni M, et al. Risk factor burden and long-term prognosis of patients with premature coronary artery disease. J Am Heart Assoc. 2020. https://doi.org/10.1161/JAHA.120.017712.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Sivapalaratnam S, et al. Family history of premature coronary heart disease and risk prediction in the EPIC-Norfolk prospective population study. Heart. 2010;96(24):1985.

    Article  PubMed  Google Scholar 

  159. Bastuji-Garin S, et al. The Framingham prediction rule is not valid in a European population of treated hypertensive patients. J Hypertens. 2002;20(10):1973–80.

    Article  CAS  PubMed  Google Scholar 

  160. Brindle P, et al. Predictive accuracy of the Framingham coronary risk score in British men: prospective cohort study. BMJ. 2003;327(7426):1267.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Khan RJ, Stewart CP, Davis SK, Harvey DJ, Leistikow BN. The risk and burden of smoking related heart disease mortality among young people in the United States. Tob Induc Dis. 2015;13(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Sadeghian S, Graili P, Salarifar M, Karimi AA, Darvish S, Abbasi SH. Opium consumption in men and diabetes mellitus in women are the most important risk factors of premature coronary artery disease in Iran. Int J Cardiol. 2010;141(1):116–8.

    Article  PubMed  Google Scholar 

  163. Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res - Rev Mut Res. 2021;787:108365.

    Article  CAS  Google Scholar 

  164. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100:1–19.

    Article  CAS  PubMed  Google Scholar 

  165. Patel KM, et al. Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis. Circ Res. 2015;116(5):789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sun R, Mendez D, Warner KE. Trends in nicotine product use among US adolescents, 1999–2020. JAMA Netw Open. 2021;4(8):e2118788.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Dutra LM and Glantz SA. E-cigarettes and national adolescent cigarette use: 2004–2014. Pediatrics. 2017;139(2). https://doi.org/10.1542/peds.2016-2450

  168. Harrell MB, et al. Flavored e-cigarette use: characterizing youth, young adult, and adult users. Prev Med Rep. 2017;5:33–40.

    Article  CAS  PubMed  Google Scholar 

  169. Wang TW, Neff LJ, Park-Lee E, Ren C, Cullen KA, King BA. E-cigarette use among middle and high school students — United States, 2020. MMWR Surveill Summ. 2020;69(37):1310.

    Google Scholar 

  170. Leventhal AM, et al. Association of electronic cigarette use with initiation of combustible tobacco product smoking in early adolescence. JAMA. 2015;314(7):700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Martinelli T, et al. Exploring the gateway hypothesis of e-cigarettes and tobacco: a prospective replication study among adolescents in the Netherlands and Flanders. Tob Control. 2023;32(2):170–8.

    Article  PubMed  Google Scholar 

  172. Matsuzawa Y, Lerman A. Endothelial dysfunction and coronary artery disease: assessment, prognosis, and treatment. Coron Artery Dis. 2014;25(8):713–24.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kuntic M, et al. Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2). Eur Heart J. 2020;41(26):2472–83.

    Article  CAS  PubMed  Google Scholar 

  174. von Hundelshausen P, et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation. 2001;103(13):1772–7.

    Article  Google Scholar 

  175. Badimon L, Badimon JJ, Penny W, Webster MW, Chesebro JH, Fuster V. Endothelium and atherosclerosis. J Hypertens Suppl. 1992;10(2):S43-50.

    CAS  PubMed  Google Scholar 

  176. Wold LE, et al. Cardiopulmonary consequences of vaping in adolescents: a scientific statement from the American Heart Association. Circ Res. 2022;131(3):e70–82.

    Article  CAS  PubMed  Google Scholar 

  177. Dydyk AM, Jain NK, and Gupta M. Opioid use disorder. In: StatPearls [Internet], StatPearls Publishing;2023

  178. Chang HY, Kharrazi H, Bodycombe D, Weiner JP, and Alexander GC. Healthcare costs and utilization associated with high-risk prescription opioid use: a retrospective cohort study. BMC Med. 2018;16(1). https://doi.org/10.1186/s12916-018-1058-y

  179. Doshi R, et al. Frequency of cardiovascular events and in-hospital mortality with opioid overdose hospitalizations. Am J Cardiol. 2019;124(10):1528–33.

    Article  PubMed  Google Scholar 

  180. Krantz MJ, Palmer RB, Haigney MCP. Cardiovascular complications of opioid use: JACC state-of-the-art review. J Am Coll Cardiol. 2021;77(2):205–23.

    Article  CAS  PubMed  Google Scholar 

  181. Nakhaee S, Ghasemi S, Karimzadeh K, Zamani N, Alinejad-Mofrad S, and Mehrpour O. The effects of opium on the cardiovascular system: a review of side effects, uses, and potential mechanisms. Subst Abuse Treat Prev Policy 2020;15(1). https://doi.org/10.1186/s13011-020-00272-8. https://doi.org/10.1186/s13011-020-00272-8

  182. Asgary S, Sarrafzadegan N, Naderi G-A, Rozbehani R. Effect of opium addiction on new and traditional cardiovascular risk factors: do duration of addiction and route of administration matter? Lipids Health Dis. 2008;7(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Ziaee M, Hajizadeh R, Khorrami A, Sepehrvand N, Momtaz S, Ghaffari S. Cardiovascular complications of chronic opium consumption: a narrative review article. Iran J Public Health. 2019;48(12):2154–64.

    PubMed  PubMed Central  Google Scholar 

  184. Baldo BA. Toxicities of opioid analgesics: respiratory depression, histamine release, hemodynamic changes, hypersensitivity, serotonin toxicity. Arch Toxicol. 2021;95(8):2627–42.

    Article  CAS  PubMed  Google Scholar 

  185. Dick DM and Agrawal A. The genetics of alcohol and other drug dependence. Alcohol Res Health 2008;31(2)

  186. Rosenbloom JM, Burns SM, Kim E, August DA, Ortiz VE, and Houle TT. Race/ethnicity and sex and opioid administration in the emergency room. Anesth Analg 2019;128(5) https://doi.org/10.1213/ANE.0000000000003517

  187. Momtazi S, Rawson R. Substance abuse among Iranian high school students. Curr Opin Psychiatry. 2010;23(3):221–6.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Maino A, et al. Opium as a risk factor for early-onset coronary artery disease: results from the Milano-Iran (MIran) study. PLoS ONE. 2023;18(4):e0283707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Marmor M, Penn A, Widmer K, Levin RI, Maslansky R. Coronary artery disease and opioid use. Am J Cardiol. 2004;93(10):1295–7.

    Article  PubMed  Google Scholar 

  190. Piano MR. Alcohol’s effects on the cardiovascular system. Alcohol Res. 2017;38(2):219–41.

    PubMed  PubMed Central  Google Scholar 

  191. Grucza RA, Norberg KE, Bierut LJ. Binge drinking among youths and young adults in the United States: 1979–2006. J Am Acad Child Adolesc Psychiatry. 2009;48(7):692–702.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Alterman AI, Bridges KR, Tarter RE. Drinking behavior of high risk college men: contradictory preliminary findings. Alcohol Clin Exp Res. M1986;10(3):305–10.

    Article  CAS  PubMed  Google Scholar 

  193. Quigley LA, Marlatt GA. Drinking among young adults: prevalence, patterns, and consequences. Alcohol Health Res World. 1996;20(3):185–91.

    PubMed  PubMed Central  Google Scholar 

  194. Kannel WB, Ellison RC. Alcohol and coronary heart disease: the evidence for a protective effect. Clin Chim Acta. 1996;246(1–2):59–76.

    Article  CAS  PubMed  Google Scholar 

  195. Langer RD, Criqui MH, Reed DM. Lipoproteins and blood pressure as biological pathways for effect of moderate alcohol consumption on coronary heart disease. Circulation. 1992;85(3):910–5.

    Article  CAS  PubMed  Google Scholar 

  196. Biddinger KJ, et al. Association of habitual alcohol intake with risk of cardiovascular disease. JAMA Netw Open. 2022;5(3):e223849. A study involving Mendelian randomization focused in the UK Biobank cohort which observed various levels of alcohol intake relative to cardiovascular risk. Risk differences were observed across levels of intake, where light alcohol consumption was noted to cause minimal increases in cardiovascular risk and heavier consumption caused exponential increases in cardiovascular risk. Additionally, adjustment for healthy lifestyle factors reduced the cardioprotective effects of modest alcohol intake.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Larsson SC, Burgess S, Mason AM, Michaëlsson K. Alcohol consumption and cardiovascular disease: a Mendelian randomization study. Circ Genom Precis Med. 2020;13(3):e002814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hu C, et al. Causal associations of alcohol consumption with cardiovascular diseases and all-cause mortality among Chinese males. Am J Clin Nutr. 2022;116(3):771–9.

    Article  PubMed  Google Scholar 

  199. Pletcher MJ, Varosy P, Kiefe CI, Lewis CE, Sidney S, Hulley SB. Alcohol consumption, binge drinking, and early coronary calcification: findings from the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Epidemiol. 2005;161(5):423–33.

    Article  PubMed  Google Scholar 

  200. Englund MM, Egeland B, Oliva EM, Collins WA. Childhood and adolescent predictors of heavy drinking and alcohol use disorders in early adulthood: a longitudinal developmental analysis. Addiction. 2008;103(s1):23–35.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Shoar NS, Marwaha R, and Molla M. Dextroamphetamine-amphetamine. In: StatPearls [Internet], StatPearls Publishing; 2023

  202. Schrantee A, et al. Dopaminergic system dysfunction in recreational dexamphetamine users. Neuropsychopharmacology. 2015;40(5):1172–80.

    Article  CAS  PubMed  Google Scholar 

  203. Potula R, et al. Methamphetamine causes mitrochondrial oxidative damage in human T lymphocytes leading to functional impairment. J Immunol. 2010;185(5):2867–76.

    Article  CAS  PubMed  Google Scholar 

  204. Graham DG, Tiffany SM, Bell WR Jr, Gutknecht WF. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol. 1978;14(4):644–53.

    CAS  PubMed  Google Scholar 

  205. Mahtta D, et al. Recreational substance use among patients with premature atherosclerotic cardiovascular disease. Heart. 2021;107(8):650–6.

    Article  PubMed  Google Scholar 

  206. Batra V, et al. Early onset cardiovascular disease related to methamphetamine use is most striking in individuals under 30: a retrospective chart review. Addict Behav Rep. 2022;15:100435.

    PubMed  PubMed Central  Google Scholar 

  207. Schneiderman N, Ironson G, Siegel SD. Stress and health: psychological, behavioral, and biological determinants. Annu Rev Clin Psychol. 2005;1(1):607–28.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Henein MY, Vancheri S, Longo G and Vancheri F. The impact of mental stress on cardiovascular health-part II. J Clin Med Res. 2022; 11(15). https://doi.org/10.3390/jcm11154405. https://doi.org/10.3390/jcm11154405

  209. Sadeghi B, Mashalchi H, Eghbali S, Jamshidi M, Golmohammadi M, Mahvar T. The relationship between hostility and anger with coronary heart disease in patients. J Educ Health Promot. A2020;9:223.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Satyjeet F, et al. Psychological stress as a risk factor for cardiovascular disease: a case-control study. Cureus. 2020;12(10):e10757.

    PubMed  PubMed Central  Google Scholar 

  211. Yao B-C, Meng L-B, Hao M-L, Zhang Y-M, Gong T, Guo Z-G. Chronic stress: a critical risk factor for atherosclerosis. J Int Med Res. 2019;47(4):1429–40.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Di Carli MF, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336(17):1208–16.

    Article  PubMed  Google Scholar 

  213. Liu M, et al. An evidence of brain-heart disorder: mental stress-induced myocardial ischemia regulated by inflammatory cytokines. Neurol Res. 2020;42(8):670–5.

    Article  CAS  PubMed  Google Scholar 

  214. Kershaw KN, Lane-Cordova AD, Carnethon MR, Tindle HA, Liu K. Chronic stress and endothelial dysfunction: the multi-ethnic study of atherosclerosis (MESA). Am J Hypertens. 2017;30(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  215. Chang PP, Ford DE, Meoni LA, Wang N-Y, Klag MJ. Anger in young men and subsequent premature cardiovascular disease: the precursors study. Arch Intern Med. 2002;162(8):901–6.

    Article  PubMed  Google Scholar 

  216. Henning RJ. Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: a review of the pathophysiology and treatment of obesity. Am J Cardiovasc Dis. 2021;11(4):504–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Piché M-E, Tchernof A, Després J-P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126(11):1477–500.

    Article  PubMed  Google Scholar 

  218. de Onis M, Blössner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr. 2010;92(5):1257–64.

    Article  PubMed  Google Scholar 

  219. Grundy SM. Multifactorial causation of obesity: implications for prevention. Am J Clin Nutr. 1998;67(3 Suppl):563S-S572.

    Article  CAS  PubMed  Google Scholar 

  220. Din-Dzietham R, Liu Y, Bielo M-V, Shamsa F. High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation. 2007;116(13):1488–96.

    Article  PubMed  Google Scholar 

  221. Cole CB, Nikpay M, Stewart AFR, McPherson R. Increased genetic risk for obesity in premature coronary artery disease. Eur J Hum Genet. 2016;24(4):587–91.

    Article  PubMed  Google Scholar 

  222. Raj M. Obesity and cardiovascular risk in children and adolescents. Indian J Endocrinol Metab. 2012;16(1):13–9.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Mihuta M-S, et al. “Subclinical atherosclerosis progression in obese children with relevant cardiometabolic risk factors can be assessed through carotid intima media thickness”, NATO Adv. Sci Inst Ser E Appl Sci. 2021;11(22):10721.

    CAS  Google Scholar 

  224. Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa heart study. Pediatrics. 2001;108(3):712–8.

    Article  CAS  PubMed  Google Scholar 

  225. Beauloye V, Zech F, Tran HTM, Clapuyt P, Maes M, Brichard SM. Determinants of early atherosclerosis in obese children and adolescents. J Clin Endocrinol Metab. 2007;92(8):3025–32.

    Article  CAS  PubMed  Google Scholar 

  226. McGill HC Jr, et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002;105(23):2712–8.

    Article  PubMed  Google Scholar 

  227. Yip A, Saw J. Spontaneous coronary artery dissection-a review. Cardiovasc Diagn Ther. 2015;5(1):37–48.

    PubMed  PubMed Central  Google Scholar 

  228. Garcia-Guimarães M, et al. Spontaneous coronary artery dissection: mechanisms, diagnosis and management. Eur Cardiol. 2020;15:1–8.

    Article  PubMed  Google Scholar 

  229. Nakashima T, et al. Prognostic impact of spontaneous coronary artery dissection in young female patients with acute myocardial infarction: a report from the Angina Pectoris-Myocardial Infarction Multicenter Investigators in Japan. Int J Cardiol. 2016;207:341–8.

    Article  PubMed  Google Scholar 

  230. Saw J, Aymong E, Mancini GBJ, Sedlak T, Starovoytov A, Ricci D. Nonatherosclerotic coronary artery disease in young women. Can J Cardiol. 2014;30(7):814–9.

    Article  PubMed  Google Scholar 

  231. Nishiguchi T, et al. Prevalence of spontaneous coronary artery dissection in patients with acute coronary syndrome. Eur Heart J Acute Cardiovasc Care. 2016;5(3):263–70.

    Article  PubMed  Google Scholar 

  232. White RE. Estrogen and vascular function. Vascul Pharmacol. 2002;38(2):73–80.

    Article  CAS  PubMed  Google Scholar 

  233. Rensing BJ, Kofflard M, van den Brand MJBM, Foley DP. Spontaneous dissections of all three coronary arteries in a 33-week-pregnant woman. Catheter Cardiovasc Interv. 1999;48(2):207–10.

    Article  CAS  PubMed  Google Scholar 

  234. Mikkola TS, Clarkson TB. Estrogen replacement therapy, atherosclerosis, and vascular function. Cardiovasc Res. 2002;53(3):605–19.

    Article  CAS  PubMed  Google Scholar 

  235. Tikkanen MJ, Nikkila EA, Vartiainen E. Natural oestrogen as an effective treatment for type-II hyperlipoproteinaemia in postmenopausal women. Lancet. 1978;2(8088):490–1.

    Article  CAS  PubMed  Google Scholar 

  236. Grodstein F. A prospective, observational study of postmenopausal hormone therapy and primary prevention of cardiovascular disease. Ann Intern Med. 2000;133(12):933.

    Article  CAS  PubMed  Google Scholar 

  237. Hayes SN, et al. Spontaneous coronary artery dissection: JACC state-of-the-art review. J Am Coll Cardiol. 2020;76(8):961–84.

    Article  PubMed  Google Scholar 

  238. Marcoff L, Rahman E. Menstruation-associated spontaneous coronary artery dissection. J Invasive Cardiol. 2010;22(10):E183–5.

    PubMed  Google Scholar 

  239. Aggarwal A, Srivastava S, Velmurugan M. Newer perspectives of coronary artery disease in young. World J Cardiol. 2016;8(12):728.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Klein LW. Acute coronary syndromes in young patients with angiographically normal coronary arteries. Am Heart J. 2006;152(4). https://doi.org/10.1016/j.ahj.2006.03.020

  241. Tanaka M et al. Evaluation of characteristics and degree of remodeling in coronary atherosclerotic lesions by 64-detector multislice computed tomography (MSCT). Atherosclerosis. 2009;203(2). https://doi.org/10.1016/j.atherosclerosis.2008.07.013

  242. Kullo IJ, Edwards WD, and Schwartz RS. Vulnerable plaque: pathobiology and clinical implications. Ann Intern Med. 1998;129(12). https://doi.org/10.7326/0003-4819-129-12-199812150-00010

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. L. wrote the following sections: Introduction, Genetics of pCAD, Polygenic Causes of pCAD, Clinical Risk Factors and Clinical Risk Scores, and Conclusion as well as revised writing for all sections. H. P. wrote the following sections: Smoking, Alcohol, Amphetamines, Stress and Exercise, and Spontaneous Coronary Artery Dissection (SCAD). D. G. wrote the following sections: Opioid Usage and collaborated for research on sections written by H. P. M. D. prepared Fig. 1 and aided with research on clinical aspects. R. L. revised genetics section and provided expertise regarding overall topic. G. P. assigned topics related to pCAD and is the principal investigator of the project. All authors reviewed the manuscript.

Corresponding author

Correspondence to Guillaume Paré.

Ethics declarations

Competing interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, A., Peng, H., Golinsky, D. et al. What Causes Premature Coronary Artery Disease?. Curr Atheroscler Rep (2024). https://doi.org/10.1007/s11883-024-01200-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-024-01200-y

Keywords

Navigation