Skip to main content

Advertisement

Log in

Machine Learning in Invasive and Noninvasive Coronary Angiography

  • Review
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The objective of this review is to shed light on the transformative potential of machine learning (ML) in coronary angiography. We aim to understand existing developments in using ML for coronary angiography and discuss broader implications for the future of coronary angiography and cardiovascular medicine.

Recent Findings

The developments in invasive and noninvasive imaging have revolutionized diagnosis and treatment of coronary artery disease (CAD). However, CAD remains underdiagnosed and undertreated. ML has emerged as a powerful tool to further improve image analysis, hemodynamic assessment, lesion detection, and predictive modeling. These advancements have enabled more accurate identification of CAD, streamlined workflows, reduced the need for invasive diagnostic procedures, and improved the diagnostic value of invasive procedures when they are needed. Further integration of ML with coronary angiography will advance the prevention, diagnosis, and treatment of CAD.

Summary

The integration of ML with coronary angiography is ushering in a new era in cardiovascular medicine. We highlight five use cases to leverage ML in coronary angiography: (1) improvement of quality and efficacy, (2) characterization of plaque, (3) hemodynamic assessment, (4) prediction of future outcomes, and (5) diagnosis of non-atherosclerotic coronary disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35. https://doi.org/10.1056/NEJMoa1002358.

    Article  CAS  PubMed  Google Scholar 

  3. Davies JE, Sen S, Dehbi HM, Al-Lamee R, Petraco R, Nijjer SS, et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med. 2017;376(19):1824–34. https://doi.org/10.1056/NEJMoa1700445.

    Article  PubMed  Google Scholar 

  4. Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol. 2014;63(12):1145–55. https://doi.org/10.1016/j.jacc.2013.11.043.

    Article  PubMed  Google Scholar 

  5. Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61(22):2233–41. https://doi.org/10.1016/j.jacc.2012.11.083.

    Article  PubMed  Google Scholar 

  6. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–36. https://doi.org/10.1056/NEJMoa0806576.

    Article  CAS  PubMed  Google Scholar 

  7. Williams MC, Moss AJ, Dweck M, Adamson PD, Alam S, Hunter A, et al. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART study. J Am Coll Cardiol. 2019;73(3):291–301. https://doi.org/10.1016/j.jacc.2018.10.066.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668–79. https://doi.org/10.1016/j.jacc.2018.03.521.

    Article  PubMed  Google Scholar 

  9. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32. https://doi.org/10.1016/j.jacc.2008.07.031.

    Article  PubMed  Google Scholar 

  10. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–528. https://doi.org/10.1161/cir.0000000000000659.

    Article  PubMed  Google Scholar 

  11. Jonas RA, Weerakoon S, Fisher R, Griffin WF, Kumar V, Rahban H, et al. Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiography: a CLARIFY trial sub-study. Clin Imaging. 2022;91:19–25. https://doi.org/10.1016/j.clinimag.2022.08.005. Findings from this study highlights the subjectivity and inherent variability of coronary computer tomography angiography evaluations.

    Article  PubMed  Google Scholar 

  12. Zhang H, Mu L, Hu S, Nallamothu BK, Lansky AJ, Xu B, et al. Comparison of physician visual assessment with quantitative coronary angiography in assessment of stenosis severity in China. JAMA Intern Med. 2018;178(2):239–47. https://doi.org/10.1001/jamainternmed.2017.7821.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Priest VL, Scuffham PA, Hachamovitch R, Marwick TH. Cost-effectiveness of coronary computed tomography and cardiac stress imaging in the emergency department: a decision analytic model comparing diagnostic strategies for chest pain in patients at low risk of acute coronary syndromes. JACC Cardiovasc Imaging. 2011;4(5):549–56. https://doi.org/10.1016/j.jcmg.2011.03.008.

    Article  PubMed  Google Scholar 

  14. Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep. 2016;6:26286. https://doi.org/10.1038/srep26286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392(10162):2388–96. https://doi.org/10.1016/s0140-6736(18)31645-3.

    Article  PubMed  Google Scholar 

  16. Lansberg MG, Christensen S, Kemp S, Mlynash M, Mishra N, Federau C, et al. Computed tomographic perfusion to predict response to recanalization in ischemic stroke. Ann Neurol. 2017;81(6):849–56. https://doi.org/10.1002/ana.24953.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8. https://doi.org/10.1038/nature21056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10. https://doi.org/10.1001/jama.2016.17216.

    Article  PubMed  Google Scholar 

  19. Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 2019;40(24):1975–86. https://doi.org/10.1093/eurheartj/ehy404.

    Article  CAS  PubMed  Google Scholar 

  20. Kang D, Dey D, Slomka PJ, Arsanjani R, Nakazato R, Ko H, et al. Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography. J Med Imaging (Bellingham). 2015;2(1):014003. https://doi.org/10.1117/1.Jmi.2.1.014003.

    Article  PubMed  Google Scholar 

  21. Lin A, Manral N, McElhinney P, Killekar A, Matsumoto H, Kwiecinski J, et al. Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study. Lancet Digit Health. 2022;4(4):e256–65. https://doi.org/10.1016/s2589-7500(22)00022-x. In this international, multicenter study, a comprehensive and externally validated machine learning model was developed for rapid measurements of plaque volume and stenosis. It demonstrated that the model agreed closely with the expert readers but was more consistent and significantly faster.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med. 2018;1. https://doi.org/10.1038/s41746-017-0013-1

  23. van Rosendael AR, Maliakal G, Kolli KK, Beecy A, Al’Aref SJ, Dwivedi A, et al. Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. J Cardiovasc Comput Tomogr. 2018;12(3):204–9. https://doi.org/10.1016/j.jcct.2018.04.011.

    Article  PubMed  Google Scholar 

  24. Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48. https://doi.org/10.1146/annurev-bioeng-071516-044442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology. 2018;286(2):676–84. https://doi.org/10.1148/radiol.2017170700.

    Article  PubMed  Google Scholar 

  26. Wang G, Li W, Ourselin S, Vercauteren T. Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation. Front Comput Neurosci. 2019;13:56. https://doi.org/10.3389/fncom.2019.00056.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372(14):1291–300. https://doi.org/10.1056/NEJMoa1415516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De la Garza-Salazar F, Lankenau-Vela DL, Cadena-Nuñez B, González-Cantú A, Romero-Ibarguengoitia ME. The effect of functional and intra-coronary imaging techniques on fluoroscopy time, radiation dose and contrast volume during coronary angiography. Sci Rep. 2020;10(1):6950. https://doi.org/10.1038/s41598-020-63791-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koskinas KC, Nakamura M, Räber L, Colleran R, Kadota K, Capodanno D, et al. Current use of intracoronary imaging in interventional practice - results of a European Association of Percutaneous Cardiovascular Interventions (EAPCI) and Japanese Association of Cardiovascular Interventions and Therapeutics (CVIT) Clinical Practice Survey. EuroIntervention. 2018;14(4):e475–84. https://doi.org/10.4244/eijy18m03_01.

    Article  PubMed  Google Scholar 

  30. Dey D, Gaur S, Ovrehus KA, Slomka PJ, Betancur J, Goeller M, et al. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eur Radiol. 2018;28(6):2655–64. https://doi.org/10.1007/s00330-017-5223-z.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jia H, Dai J, Hou J, Xing L, Ma L, Liu H, et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). Eur Heart J. 2017;38(11):792–800. https://doi.org/10.1093/eurheartj/ehw381.

    Article  CAS  PubMed  Google Scholar 

  32. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017;69(21):2657–64. https://doi.org/10.1016/j.jacc.2017.03.571.

    Article  PubMed  Google Scholar 

  33. Fahed AC, Jang IK. Plaque erosion and acute coronary syndromes: phenotype, molecular characteristics and future directions. Nat Rev Cardiol. 2021;18(10):724–34. https://doi.org/10.1038/s41569-021-00542-3.

    Article  PubMed  Google Scholar 

  34. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38(7):500–7. https://doi.org/10.1093/eurheartj/ehw188.

    Article  PubMed  Google Scholar 

  35. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24. https://doi.org/10.1056/NEJMoa0807611.

    Article  CAS  PubMed  Google Scholar 

  36. Douglas PS, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, et al. 1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study. J Am Coll Cardiol. 2016;68(5):435–45. https://doi.org/10.1016/j.jacc.2016.05.057.

    Article  PubMed  Google Scholar 

  37. Cho H, Lee JG, Kang SJ, Kim WJ, Choi SY, Ko J, et al. Angiography-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions. J Am Heart Assoc. 2019;8(4):e011685. https://doi.org/10.1161/jaha.118.011685.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kogame N, Ono M, Kawashima H, Tomaniak M, Hara H, Leipsic J, et al. The impact of coronary physiology on contemporary clinical decision making. JACC Cardiovasc Interv. 2020;13(14):1617–38. https://doi.org/10.1016/j.jcin.2020.04.040.

    Article  PubMed  Google Scholar 

  39. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45. https://doi.org/10.1056/NEJMoa072100.

    Article  CAS  PubMed  Google Scholar 

  40. Kral BG, Becker LC, Vaidya D, Yanek LR, Qayyum R, Zimmerman SL, et al. Noncalcified coronary plaque volumes in healthy people with a family history of early onset coronary artery disease. Circ Cardiovasc Imaging. 2014;7(3):446–53. https://doi.org/10.1161/circimaging.113.000980.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nakanishi R, Slomka PJ, Rios R, Betancur J, Blaha MJ, Nasir K, et al. Machine learning adds to clinical and CAC assessments in predicting 10-year CHD and CVD deaths. JACC Cardiovasc Imaging. 2021;14(3):615–25. https://doi.org/10.1016/j.jcmg.2020.08.024. This study demonstrated that a machine learning model was superior in predicting cardiovascular disease and coronary heart disease related mortality compared to existing prediction tools including atherosclerotic cardiovascular disease risk calculators and coronary artery calcium score.

    Article  PubMed  Google Scholar 

  42. Hayes SN, Kim ESH, Saw J, Adlam D, Arslanian-Engoren C, Economy KE, et al. Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American Heart Association. Circulation. 2018;137(19):e523–57. https://doi.org/10.1161/cir.0000000000000564.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tweet MS, Hayes SN, Pitta SR, Simari RD, Lerman A, Lennon RJ, et al. Clinical features, management, and prognosis of spontaneous coronary artery dissection. Circulation. 2012;126(5):579–88. https://doi.org/10.1161/circulationaha.112.105718.

    Article  PubMed  Google Scholar 

  44. Alfonso F, Paulo M, Lennie V, Dutary J, Bernardo E, Jiménez-Quevedo P, et al. Spontaneous coronary artery dissection: long-term follow-up of a large series of patients prospectively managed with a “conservative” therapeutic strategy. JACC Cardiovasc Interv. 2012;5(10):1062–70. https://doi.org/10.1016/j.jcin.2012.06.014.

    Article  PubMed  Google Scholar 

  45. Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29(8):914–56. https://doi.org/10.1016/j.healun.2010.05.034.

    Article  PubMed  Google Scholar 

  46. Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA, et al. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant. 2010;29(7):717–27. https://doi.org/10.1016/j.healun.2010.05.017.

    Article  PubMed  Google Scholar 

  47. Del Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, et al. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78(13):1352–71. https://doi.org/10.1016/j.jacc.2021.07.042.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Marinescu MA, Löffler AI, Ouellette M, Smith L, Kramer CM, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc Imaging. 2015;8(2):210–20. https://doi.org/10.1016/j.jcmg.2014.12.008.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mathew RC, Bourque JM, Salerno M, Kramer CM. Cardiovascular imaging techniques to assess microvascular dysfunction. JACC Cardiovasc Imaging. 2020;13(7):1577–90. https://doi.org/10.1016/j.jcmg.2019.09.006.

    Article  PubMed  Google Scholar 

  50. Ford TJ, Stanley B, Sidik N, Good R, Rocchiccioli P, McEntegart M, et al. 1-year outcomes of angina management guided by invasive coronary function testing (CorMicA). JACC Cardiovasc Interv. 2020;13(1):33–45. https://doi.org/10.1016/j.jcin.2019.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56. https://doi.org/10.1038/s41591-018-0300-7.

    Article  CAS  PubMed  Google Scholar 

  52. Obermeyer Z, Emanuel EJ. Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med. 2016;375(13):1216–9. https://doi.org/10.1056/NEJMp1606181.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W. Federated learning of predictive models from federated electronic health records. Int J Med Inform. 2018;112:59–67. https://doi.org/10.1016/j.ijmedinf.2018.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Castelvecchi D. Can we open the black box of AI? Nature. 2016;538(7623):20–3. https://doi.org/10.1038/538020a.

    Article  CAS  PubMed  Google Scholar 

  55. Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: visualising image classification models and saliency maps. 2013. https://doi.org/10.48550/arXiv.1312.6034

  56. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)2016. p. 2921–9.

  57. Olah C, Mordvintsev A, Schubert L. Feature Visualization. Distill. https://doi.org/10.23915/distill.00007

  58. McGovern A, Lagerquist R, John Gagne D, Jergensen GE, Elmore KL, Homeyer CR, et al. Making the black box more transparent: understanding the physical implications of machine learning. Bull Am Meteor Soc. 2019;100(11):2175–99. https://doi.org/10.1175/BAMS-D-18-0195.1.

    Article  Google Scholar 

  59. Wagstaff KL, Lee J. Interpretable discovery in large image data sets. 2018. https://doi.org/10.48550/arXiv.1806.08340

Download references

Funding

Dr. Unlu receives funding from the National Heart Lung and Blood Institute under award number T32HL007604. Dr. Fahed receives funding from the National Heart Lung and Blood Institute under award numbers K08 HL161448 and R01 HL164629.

Author information

Authors and Affiliations

Authors

Contributions

O.U. and A.C.F conceptualized and wrote the main manuscript text and prepared tables and figures.

Corresponding author

Correspondence to Akl C. Fahed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

Dr. Fahed reports being co-founder of Goodpath and received a research grant from Abbott Vascular, unrelated to the subject of this manuscript. Dr. Unlu has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unlu, O., Fahed, A.C. Machine Learning in Invasive and Noninvasive Coronary Angiography. Curr Atheroscler Rep 25, 1025–1033 (2023). https://doi.org/10.1007/s11883-023-01178-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-023-01178-z

Keywords

Navigation