Skip to main content

Advertisement

Log in

Recent Advances in Coronary Computed Tomography Angiogram: The Ultimate Tool for Coronary Artery Disease

  • Coronary Heart Disease (Virani and M. Al Rifai, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The emerging technologies in multidetector computed tomography scanners gave the ability to image coronary arteries in a single heartbeat, at a higher quality, and low radiation dose. Furthermore, incorporating artificial intelligence and machine learning into image processing and interpretation have extended the use for coronary computed tomography angiogram (CCTA) and its applications. In this review, we will explore the recent evidence and advances supporting CCTA to become the ultimate tool for coronary artery disease.

Recent Findings

Results from the EVINCI, ISCHEMIA, SCOT-HEART, and PROMISE showed that CCTA is better in patients’ risk stratification and in detecting subclinical atherosclerosis, resulting in earlier interventions and lesser events. Additionally, CCTA gave us a closer look on atherosclerotic disease by identifying different type of plaque and their clinical significance. Furthermore, FFRCT is a notable example of incorporating artificial intelligence into CCTA. This technology helped us to accurately and non-invasively identify flow limiting lesions, guiding revascularization.

Summary

As a result of the recent evidence, CCTA have made its way into the chest pain guidelines all over the world. Moreover, CCTA have the potential to revolutionize our understanding and standards in screening, preventing, and managing heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fryar CD, Chen TC, Li X. Prevalence of uncontrolled risk factors for cardiovascular disease: United States, 1999–2010. NCHS Data Brief. 2012;103:1–8.

    Google Scholar 

  2. Centers for Disease Control and Prevention, National Center for Health Statistics. About Multiple Cause of Death, 1999–2019. CDC WONDER Online Database website. Atlanta, GA: Centers for Disease Control and Prevention; 2019.

  3. Kannel WB, Schatzkin A. Sudden death: lessons from subsets in population studies. J Am Coll Cardiol. 1985;5(6 Suppl):141B-149B. https://doi.org/10.1016/s0735-1097(85)80545-3.

    Article  CAS  PubMed  Google Scholar 

  4. Stocker TJ, Deseive S, Leipsic J, Hadamitzky M, Chen MY, Rubinshtein R, PROTECTION VI investigators, et al. Reduction in radiation exposure in cardiovascular computed tomography imaging: results from the PROspective multicenter registry on radiaTion dose Estimates of cardiac CT angIOgraphy iN daily practice in 2017 (PROTECTION VI). Eur Heart J. 2018;39(41):3715–23. https://doi.org/10.1093/eurheartj/ehy546.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32. https://doi.org/10.1016/j.jacc.2008.07.031.

    Article  PubMed  Google Scholar 

  6. Budoff MJ, Li D, Kazerooni EA, Thomas GS, Mieres JH, Shaw LJ. Diagnostic accuracy of noninvasive 64-row computed tomographic coronary angiography (CCTA) compared with myocardial perfusion imaging (MPI): the PICTURE study, a prospective multicenter trial. Acad Radiol. 2017;24(1):22–9. https://doi.org/10.1016/j.acra.2016.09.008.

    Article  PubMed  Google Scholar 

  7. Neglia D, Rovai D, Caselli C, Pietila M, Teresinska A, Aguadé-Bruix S, EVINCI Study Investigators, et al. Detection of significant coronary artery disease by noninvasive anatomical and functional imaging. Circ Cardiovasc Imaging. 2015;8(3):e002179. https://doi.org/10.1161/CIRCIMAGING.114.002179.

    Article  PubMed  Google Scholar 

  8. Nielsen LH, Ortner N, Nørgaard BL, Achenbach S, Leipsic J, Abdulla J. The diagnostic accuracy and outcomes after coronary computed tomography angiography vs. conventional functional testing in patients with stable angina pectoris: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2014;15(9):961–71. https://doi.org/10.1093/ehjci/jeu027.

    Article  PubMed  Google Scholar 

  9. Mancini GBJ, Leipsic J, Budoff MJ, Hague CJ, Min JK, Stevens SR, et al. CT Angiography followed by invasive angiography in patients with moderate or severe ischemia-insights from the ISCHEMIA Trial. JACC Cardiovasc Imaging. 2021;14(7):1384–93. https://doi.org/10.1016/j.jcmg.2020.11.012.

    Article  PubMed  Google Scholar 

  10. Mushtaq S, Conte E, Pontone G, Pompilio G, Guglielmo M, Annoni A, et al. Interpretability of coronary CT angiography performed with a novel whole-heart coverage high-definition CT scanner in 300 consecutive patients with coronary artery bypass grafts. J Cardiovasc Comput Tomogr. 2020;14(2):137–43. https://doi.org/10.1016/j.jcct.2019.08.004.

    Article  PubMed  Google Scholar 

  11. Dai T, Wang JR, Hu PF. Diagnostic performance of computed tomography angiography in the detection of coronary artery in-stent restenosis: evidence from an updated meta-analysis. Eur Radiol. 2018;28(4):1373–82. https://doi.org/10.1007/s00330-017-5097-0.

    Article  PubMed  Google Scholar 

  12. Finck T, Hardenberg J, Will A, Hendrich E, Haller B, Martinoff S, Hausleiter J, Hadamitzky M. 10-year follow-up after coronary computed tomography angiography in patients with suspected coronary artery disease. JACC Cardiovasc Imaging. 2019;12(7 Pt 2):1330–8. https://doi.org/10.1016/j.jcmg.2018.07.020.

    Article  PubMed  Google Scholar 

  13. Neglia D, Liga R, Caselli C, Carpeggiani C, Lorenzoni V, Sicari R, EVINCI Study Investigators, et al. Anatomical and functional coronary imaging to predict long-term outcome in patients with suspected coronary artery disease: the EVINCI-outcome study. Eur Heart J Cardiovasc Imaging. 2020;21(11):1273–82. https://doi.org/10.1093/ehjci/jez248.

    Article  PubMed  Google Scholar 

  14. Reynolds HR, Shaw LJ, Min JK, Page CB, Berman DS, Chaitman BR, et al. Outcomes in the ISCHEMIA trial based on coronary artery disease and ischemia severity. Circulation. 2021;144(13):1024–38. https://doi.org/10.1161/CIRCULATIONAHA.120.049755.

    Article  CAS  PubMed  Google Scholar 

  15. •• SCOT-HEART Investigators, Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, Flather M, et al. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med. 2018;379(10):924–33. https://doi.org/10.1056/NEJMoa1805971 (This paper showed that better 5-years outcome linked to more preventative therapies due to earlier detection of subclinical disease).

    Article  Google Scholar 

  16. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, PROSPECT Investigators, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35. https://doi.org/10.1056/NEJMoa1002358.

    Article  CAS  PubMed  Google Scholar 

  17. Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, et al. Atherosclerosis Nat Rev Dis Primers. 2019;5(1):56. https://doi.org/10.1038/s41572-019-0106-z.

    Article  PubMed  Google Scholar 

  18. Motoyama S, Ito H, Sarai M, Kondo T, Kawai H, Nagahara Y, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J Am Coll Cardiol. 2015;66(4):337–46. https://doi.org/10.1016/j.jacc.2015.05.069.

    Article  PubMed  Google Scholar 

  19. •• Williams MC, Moss AJ, Dweck M, Adamson PD, Alam S, Hunter A, et al. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART study. J Am Coll Cardiol. 2019;73(3):291–301. https://doi.org/10.1016/j.jacc.2018.10.066 (This paper showed that different plaque type have different clinical significance.).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Williams MC, Kwiecinski J, Doris M, McElhinney P, D’Souza MS, Cadet S, et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the multicenter SCOT-HEART trial (Scottish Computed Tomography of the HEART). Circulation. 2020;141(18):1452–62. https://doi.org/10.1161/CIRCULATIONAHA.119.044720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferencik M, Mayrhofer T, Bittner DO, Emami H, Puchner SB, Lu MT, et al. Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the PROMISE randomized clinical trial. JAMA Cardiol. 2018;3(2):144–52. https://doi.org/10.1001/jamacardio.2017.4973.

    Article  PubMed  PubMed Central  Google Scholar 

  22. van Rosendael AR, Narula J, Lin FY, van den Hoogen IJ, Gianni U, Al Hussein Alawamlh O, et al. Association of high-density calcified 1K plaque with risk of acute coronary syndrome. JAMA Cardiol. 2020;5(3):282–90. https://doi.org/10.1001/jamacardio.2019.5315.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee SE, Chang HJ, Sung JM, Park HB, Heo R, Rizvi A, et al. Effects of statins on coronary atherosclerotic plaques: the PARADIGM study. JACC Cardiovasc Imaging. 2018;11(10):1475–84. https://doi.org/10.1016/j.jcmg.2018.04.015.

    Article  PubMed  Google Scholar 

  24. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, CANTOS Trial Group, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  PubMed  Google Scholar 

  25. Hansson GK, Robertson AK, Söderberg-Nauclér C. Inflammation and atherosclerosis. Annu Rev Pathol. 2006;1:297–329. https://doi.org/10.1146/annurev.pathol.1.110304.100100.

    Article  CAS  PubMed  Google Scholar 

  26. Xaplanteris P, Fournier S, Pijls NHJ, Fearon WF, Barbato E, Tonino PAL, FAME 2 Investigators. Five-year outcomes with PCI guided by fractional flow reserve. N Engl J Med. 2018;379(3):250–9. https://doi.org/10.1056/NEJMoa1803538.

    Article  PubMed  Google Scholar 

  27. Völz S, Dworeck C, Redfors B, Pétursson P, Angerås O, Gan LM, et al. Survival of patients with angina pectoris undergoing percutaneous coronary intervention with intracoronary pressure wire guidance. J Am Coll Cardiol. 2020;75(22):2785–99. https://doi.org/10.1016/j.jacc.2020.04.018.

    Article  PubMed  Google Scholar 

  28. Driessen RS, Danad I, Stuijfzand WJ, Raijmakers PG, Schumacher SP, van Diemen PA, et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J Am Coll Cardiol. 2019;73(2):161–73. https://doi.org/10.1016/j.jacc.2018.10.056.

    Article  PubMed  Google Scholar 

  29. Fairbairn TA, Nieman K, Akasaka T, Nørgaard BL, Berman DS, Raff G, et al. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry. Eur Heart J. 2018;39(41):3701–11. https://doi.org/10.1093/eurheartj/ehy530.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Patel MR, Nørgaard BL, Fairbairn TA, Nieman K, Akasaka T, Berman DS, et al. 1-year impact on medical practice and clinical outcomes of FFRCT: the ADVANCE Registry. JACC Cardiovasc Imaging. 2020;13(1 Pt 1):97–105. https://doi.org/10.1016/j.jcmg.2019.03.003.

    Article  PubMed  Google Scholar 

  31. Nørgaard BL, Gaur S, Fairbairn TA, Douglas PS, Jensen JM, Patel MR, et al. Prognostic value of coronary computed tomography angiographic derived fractional flow reserve: a systematic review and meta-analysis. Heart. 2022;108(3):194–202. https://doi.org/10.1136/heartjnl-2021-319773.

    Article  PubMed  Google Scholar 

  32. Collet C, Miyazaki Y, Ryan N, Asano T, Tenekecioglu E, Sonck J, et al. Fractional flow reserve derived from computed tomographic angiography in patients with multivessel CAD. J Am Coll Cardiol. 2018;71(24):2756–69. https://doi.org/10.1016/j.jacc.2018.02.053.

    Article  PubMed  Google Scholar 

  33. NICE. Putting NICE Guidance into Practice. Resource impact report: chest pain of recent onset: Assessment and Diagnosis. 2016.

  34. NICE. Resource Impact Report: HeartFlow FFRCT for estimating fractional flow reserve from coronary CT angiography (MTG32); 2017. https://www.nice.org.uk/guidance/mtg32/resources/resource-impact-report-pdf-4363975405. Accessed Aug 2021.

  35. Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;144(22):e368–454. https://doi.org/10.1161/CIR.0000000000001029.

    Article  PubMed  Google Scholar 

  36. Choi AD, Marques H, Kumar V, Griffin WF, Rahban H, Karlsberg RP, et al. CT Evaluation by artificial intelligence for atherosclerosis, stenosis and vascular morphology (CLARIFY): a multi-center, international study. J Cardiovasc Comput Tomogr. 2021;15(6):470–6. https://doi.org/10.1016/j.jcct.2021.05.004.

    Article  PubMed  Google Scholar 

  37. van Assen M, Varga-Szemes A, Schoepf UJ, Duguay TM, Hudson HT, Egorova S, et al. Automated plaque analysis for the prognostication of major adverse cardiac events. Eur J Radiol. 2019;116:76–83. https://doi.org/10.1016/j.ejrad.2019.04.013.

    Article  PubMed  Google Scholar 

  38. Jiang B, Guo N, Ge Y, Zhang L, Oudkerk M, Xie X. Development and application of artificial intelligence in cardiac imaging. Br J Radiol. 2020;93(1113):20190812. https://doi.org/10.1259/bjr.20190812.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38(7):500–7. https://doi.org/10.1093/eurheartj/ehw188.

    Article  PubMed  Google Scholar 

Download references

Funding

Dr. Budoff reports grants from National Institutes of health, grants from General Electric, during the conduct of the study.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the manuscript.

Corresponding author

Correspondence to Matthew J. Budoff.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has not been published or accepted for publication elsewhere.

Topical Collection on Coronary Heart Disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alalawi, L., Budoff, M.J. Recent Advances in Coronary Computed Tomography Angiogram: The Ultimate Tool for Coronary Artery Disease. Curr Atheroscler Rep 24, 557–562 (2022). https://doi.org/10.1007/s11883-022-01029-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-022-01029-3

Keywords

Navigation