Skip to main content

Advertisement

Log in

Double-Trouble: Atherosclerotic Risk Factors and Congenital Heart Disease

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Youth with congenital heart disease (CHD) are uniquely vulnerable to genetic and acquired atherosclerotic cardiovascular disease (ASCVD) risk factors. With the increasingly successful management of CHD, it is important to prevent or optimally managed risk factors with the goal of improving outcomes and longevity.

Recent Findings

This review summarizes guidelines for the evaluation and management of obesity, dyslipidemia, and hypertension in youth (< 18 years of age), focusing on the special vulnerabilities associated with the type of repair and the presence of residual disease in those who undergo cardiac surgery.

Summary

Clinicians must focus on targeting these highly prevalent ASCVD risk factors to protect CHD survivors from preventable ASCVD morbidity and mortality by applying lifestyle, pharmacologic, or surgical therapies as needed. Future work should examine interventions to identify and treat ASCVD risk factors in CHD patients. Given the increased prevalence of ASCVD risk factors in youth and the morbidity and premature mortality associated with CHD, it is important for clinicians to assess global risk factors in these patients frequently, encourage adherence to lifestyle changes, and recommend pharmacotherapy and surgical interventions when clinically indicated. Future efforts should identify barriers and opportunities for improving risk factor assessment and timely intervention as a routine part of clinical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation. https://doi.org/10.1161/CIR.0000000000001052Compendium of data on various CVD and trends over time.

  2. National Cholesterol Education Program (NCEP). highlights of the report of the expert panel on blood cholesterol levels in children and adolescents. Pediatrics. 1992;89:495–501.

    Article  Google Scholar 

  3. Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med. 2007;356:2388–98.

    Article  CAS  PubMed  Google Scholar 

  4. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation. 2008;117:3171–80.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Juonala M, Magnussen CG, Venn A, Dwyer T, Burns TL, Davis PH, et al. Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study, the Childhood Determinants of Adult Health Study, the Bogalusa Heart Study, and the Muscatine Study for the International Childhood Cardiovascular Cohort (i3C) Consortium. Circulation. 2010;122:2514–20.

    Article  PubMed  Google Scholar 

  6. •• Jacobs DR Jr, Woo JG, Sinaiko AR, Daniels SR, Ikonen J, Juonala M, et al. Childhood cardiovascular risk factors and adult cardiovascular events. N Engl J Med. 2022;386:1877–88. Longitudinal multicohort data demonstrate childhood ASCVD risk factors precede future ASCVD events in adulthood even after accounting for adult risk factor levels.

    Article  PubMed  PubMed Central  Google Scholar 

  7. • Luirink IK, Wiegman A, Kusters DM, Hof MH, Groothoff JW, de Groot E, et al. 20-Year Follow-up of Statins in Children with Familial Hypercholesterolemia. N Engl J Med. 2019;381:1547–56. Longitudinal data demonstrates the availability of medication to modify LDL-c prevents early ASCVD events.

    Article  CAS  PubMed  Google Scholar 

  8. Ference BA, Yoo W, Alesh I, Mahajan N, Mirowska KK, Mewada A, et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J Am Coll Cardiol. 2012;60:2631–9.

    Article  CAS  PubMed  Google Scholar 

  9. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    Article  PubMed  Google Scholar 

  10. Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130:749–56.

    Article  PubMed  Google Scholar 

  11. Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, et al. 2018 AHA/ACC Guideline for the Management of Adults with Congenital Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73:e81–192.

    Article  PubMed  Google Scholar 

  12. Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol. 1996;143:228–39.

    Article  CAS  PubMed  Google Scholar 

  13. Kelly AS, Barlow SE, Rao G, Inge TH, Hayman LL, Steinberger J, et al. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation. 2013;128:1689–712.

    Article  PubMed  Google Scholar 

  14. Frederick CB, Snellman K, Putnam RD. Increasing socioeconomic disparities in adolescent obesity. Proc Natl Acad Sci U S A. 2014;111:1338–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17:95–107.

    Article  CAS  PubMed  Google Scholar 

  16. Sharma V, Coleman S, Nixon J, Sharples L, Hamilton-Shield J, Rutter H, et al. A systematic review and meta-analysis estimating the population prevalence of comorbidities in children and adolescents aged 5 to 18 years. Obes Rev. 2019;20:1341–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cote AT, Harris KC, Panagiotopoulos C, Sandor GG, Devlin AM. Childhood obesity and cardiovascular dysfunction. J Am Coll Cardiol. 2013;62:1309–19.

    Article  PubMed  Google Scholar 

  18. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes (Lond). 2011;35:891–8.

    Article  CAS  PubMed  Google Scholar 

  19. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362:485–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lindberg L, Danielsson P, Persson M, Marcus C, Hagman E. Association of childhood obesity with risk of early all-cause and cause-specific mortality: a Swedish prospective cohort study. PLoS Med. 2020;17:e1003078.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Expert Panel on Integrated Guidelines for Cardiovascular H, Risk Reduction in C, Adolescents, National Heart L and Blood I. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128 Suppl 5:S213-56.

  22. Grossman DC, Bibbins-Domingo K, Curry SJ, Barry MJ, Davidson KW, Doubeni CA, et al. Screening for obesity in children and adolescents: US Preventive Services Task Force Recommendation Statement. JAMA. 2017;317:2417–26.

    Article  PubMed  Google Scholar 

  23. Gray JS, Spear Filigno S, Santos M, Ward WL, Davis AM. The status of billing and reimbursement in pediatric obesity treatment programs. J Behav Health Serv Res. 2013;40:378–85.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Strauss RS, Pollack HA. Social marginalization of overweight children. Arch Pediatr Adolesc Med. 2003;157:746–52.

    Article  PubMed  Google Scholar 

  25. Perrin EM, Finkle JP, Benjamin JT. Obesity prevention and the primary care pediatrician’s office. Curr Opin Pediatr. 2007;19:354–61.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Caprio S, Daniels SR, Drewnowski A, Kaufman FR, Palinkas LA, Rosenbloom AL, et al. Influence of race, ethnicity, and culture on childhood obesity: implications for prevention and treatment: a consensus statement of Shaping America’s Health and the Obesity Society. Diabetes Care. 2008;31:2211–21.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW Jr, Garcia FA, et al. Screening for lipid disorders in children and adolescents: US Preventive Services Task Force Recommendation Statement. JAMA. 2016;316:625–33.

    Article  PubMed  Google Scholar 

  28. Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019;30:226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Styne DM, Arslanian SA, Connor EL, Farooqi IS, Murad MH, Silverstein JH, et al. Pediatric obesity-assessment, treatment, and prevention: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2017;102:709–57.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dhaliwal J, Nosworthy NM, Holt NL, Zwaigenbaum L, Avis JL, Rasquinha A, et al. Attrition and the management of pediatric obesity: an integrative review. Child Obes. 2014;10:461–73.

    Article  PubMed  Google Scholar 

  31. Hall KD. The complicated relation between resting energy expenditure and maintenance of lost weight. Am J Clin Nutr. 2018;108:652–3.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Swinburn BA, Kraak VI, Allender S, Atkins VJ, Baker PI, Bogard JR, et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report. Lancet. 2019;393:791–846.

    Article  PubMed  Google Scholar 

  33. Weghuber D, Barrett T, Barrientos-Perez M, Gies I, Hesse D, Jeppesen OK, et al. Once-weekly semaglutide in adolescents with obesity. N Engl J Med. 2022;387:2245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J. Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. JAMA. 2005;293:2873–83.

    Article  CAS  PubMed  Google Scholar 

  35. Inge TH, Ryder JR. The current paradigm of bariatric surgery in adolescents. Nat Rev Gastroenterol Hepatol. 2023;20:1–2.

    Article  PubMed  Google Scholar 

  36. Olbers T, Gronowitz E, Werling M, Marlid S, Flodmark CE, Peltonen M, et al. Two-year outcome of laparoscopic Roux-en-Y gastric bypass in adolescents with severe obesity: results from a Swedish nationwide study (AMOS). Int J Obes (Lond). 2012;36:1388–95.

    Article  CAS  PubMed  Google Scholar 

  37. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP 3rd, Herderick EE, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA. 1999;281:727–35.

    Article  CAS  PubMed  Google Scholar 

  38. Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults The Bogalusa Heart Study. N Engl J Med. 1998;338:1650–6.

    Article  CAS  PubMed  Google Scholar 

  39. Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016;67:2578–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nguyen D, Kit B and Carroll M. Abnormal cholesterol among children and adolescents in the United States, 2011–2014. NCHS Data Brief. 2015; 1–8.

  41. May AL, Kuklina EV, Yoon PW. Prevalence of cardiovascular disease risk factors among US adolescents, 1999–2008. Pediatrics. 2012;129:1035–41.

    Article  PubMed  Google Scholar 

  42. • Zachariah JP, Shittu T, Wang Y. Lipid temporal trends in normal-weight youth. Am Heart J. 2021;231:68–72. A substantial proportion of youth with abnormal lipids are normal weight, implying weight loss must not be the primary treatment modality and risk factor assessment should be done in all children.

    Article  CAS  PubMed  Google Scholar 

  43. Akioyamen LE, Genest J, Shan SD, Reel RL, Albaum JM, Chu A, et al. Estimating the prevalence of heterozygous familial hypercholesterolaemia: a systematic review and meta-analysis. BMJ Open. 2017;7:e016461.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Collaboration EASFHS, Vallejo-Vaz AJ, De Marco M, Stevens CAT, Akram A, Freiberger T, et al. Overview of the current status of familial hypercholesterolaemia care in over 60 countries - the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Atherosclerosis. 2018;277:234–55.

    Article  Google Scholar 

  45. Ritchie SK, Murphy EC, Ice C, Cottrell LA, Minor V, Elliott E, et al. Universal versus targeted blood cholesterol screening among youth: The CARDIAC project. Pediatrics. 2010;126:260–5.

    Article  PubMed  Google Scholar 

  46. Zachariah JP, McNeal CJ, Copeland LA, Fang-Hollingsworth Y, Stock EM, Sun F, et al. Temporal trends in lipid screening and therapy among youth from 2002 to 2012. J Clin Lipidol. 2015;9:S77-87.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dixon DB, Kornblum AP, Steffen LM, Zhou X, Steinberger J. Implementation of lipid screening guidelines in children by primary pediatric providers. J Pediatr. 2014;164:572–6.

    Article  PubMed  Google Scholar 

  48. Zachariah JP, Chan J, Mendelson MM, Regh T, Griggs S, Johnson PK, et al. Adolescent dyslipidemia and standardized lifestyle modification: benchmarking real-world practice. J Am Coll Cardiol. 2016;68:2122–3.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Van Horn L, Obarzanek E, Barton BA, Stevens VJ, Kwiterovich PO Jr, Lasser NL, et al. A summary of results of the Dietary Intervention Study in Children (DISC): lessons learned. Prog Cardiovasc Nurs. 2003;18:28–41.

    Article  PubMed  Google Scholar 

  50. Vuorio A, Kuoppala J, Kovanen PT, Humphries SE, Tonstad S, Wiegman A, et al. Statins for children with familial hypercholesterolemia. Cochrane Database Syst Rev. 2017;7:CD006401.

    PubMed  Google Scholar 

  51. Joyce NR, Zachariah JP, Eaton CB, Trivedi AN, Wellenius GA. Statin use and the risk of type 2 diabetes mellitus in children and adolescents. Acad Pediatr. 2017;17:515–22.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. Plos Med. 2009;6:e1000058.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Global Burden of Cardiovascular Diseases Collaboration; Roth GA, Johnson CO, Abate KH, Abd-Allah F, Ahmed M, et al. The burden of cardiovascular diseases among US States, 1990–2016. JAMA Cardiol. 2018;3(5):375–389. https://doi.org/10.1001/jamacardio.2018.0385.

  54. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140.

  55. Zachariah JP, Wang Y, Penny DJ, Baranowski T. Relation between lead exposure and trends in blood pressure in children. Am J Cardiol. 2018;122:1890–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Muntner P, He J, Cutler JA, Wildman RP, Whelton PK. Trends in blood pressure among children and adolescents. JAMA. 2004;291:2107–13.

    Article  CAS  PubMed  Google Scholar 

  57. Shi Y, de Groh M, Morrison H. Increasing blood pressure and its associated factors in Canadian children and adolescents from the Canadian Health Measures Survey. BMC Public Health. 2012;12:388.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sharma AK, Metzger DL, Rodd CJ. Prevalence and severity of high blood pressure among children based on the 2017 American Academy of Pediatrics Guidelines. JAMA Pediatr. 2018;172:557–65.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cheung EL, Bell CS, Samuel JP, Poffenbarger T, Redwine KM and Samuels JA. Race and obesity in adolescent hypertension. Pediatrics. 2017;139(5):e20161433. https://doi.org/10.1542/peds.2016-1433.

  60. Gray L, Lee IM, Sesso HD, Batty GD. Blood pressure in early adulthood, hypertension in middle age, and future cardiovascular disease mortality: HAHS (Harvard Alumni Health Study). J Am Coll Cardiol. 2011;58:2396–403.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sundstrom J, Neovius M, Tynelius P, Rasmussen F. Association of blood pressure in late adolescence with subsequent mortality: cohort study of Swedish male conscripts. BMJ. 2011;342:d643.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kelly RK, Thomson R, Smith KJ, Dwyer T, Venn A, Magnussen CG. Factors affecting tracking of blood pressure from childhood to adulthood: the childhood determinants of adult health study. J Pediatr. 2015;167:1422-8 e2.

    Article  PubMed  Google Scholar 

  63. Flynn JT, Urbina EM, Brady TM, Baker-Smith C, Daniels SR, Hayman LL, et al. Ambulatory blood pressure monitoring in children and adolescents: 2022 update: a scientific statement from the American Heart Association. Hypertension. 2022;79:e114–24.

    Article  CAS  PubMed  Google Scholar 

  64. Sorof JM, Cardwell G, Franco K, Portman RJ. Ambulatory blood pressure and left ventricular mass index in hypertensive children. Hypertension. 2002;39:903–8.

    Article  CAS  PubMed  Google Scholar 

  65. Stabouli S, Kotsis V, Papamichael C, Constantopoulos A, Zakopoulos N. Adolescent obesity is associated with high ambulatory blood pressure and increased carotid intimal-medial thickness. J Pediatr. 2005;147:651–6.

    Article  PubMed  Google Scholar 

  66. Kulsum-Mecci N, Goss C, Kozel BA, Garbutt JM, Schechtman KB, Dharnidharka VR. Effects of obesity and hypertension on pulse wave velocity in children. J Clin Hypertens (Greenwich). 2017;19:221–6.

    Article  PubMed  Google Scholar 

  67. Lovibond K, Jowett S, Barton P, Caulfield M, Heneghan C, Hobbs FD, et al. Cost-effectiveness of options for the diagnosis of high blood pressure in primary care: a modelling study. Lancet. 2011;378:1219–30.

    Article  PubMed  Google Scholar 

  68. Davis ML, Ferguson MA, Zachariah JP. Clinical predictors and impact of ambulatory blood pressure monitoring in pediatric hypertension referrals. J Am Soc Hypertens. 2014;8:660–7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gupta-Malhotra M, Banker A, Shete S, Hashmi SS, Tyson JE, Barratt MS, et al. Essential hypertension vs secondary hypertension among children. Am J Hypertens. 2015;28:73–80.

    Article  PubMed  Google Scholar 

  70. Paula Bricarello L, Poltronieri F, Fernandes R, Retondario A, de Moraes Trindade EBS, de Vasconcelos FAG. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on blood pressure, overweight and obesity in adolescents: a systematic review. Clin Nutr ESPEN. 2018;28:1–11.

    Article  PubMed  Google Scholar 

  71. Siervo M, Lara J, Chowdhury S, Ashor A, Oggioni C, Mathers JC. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr. 2015;113:1–15.

    Article  CAS  PubMed  Google Scholar 

  72. Kelley GA, Kelley KS, Tran ZV. The effects of exercise on resting blood pressure in children and adolescents: a meta-analysis of randomized controlled trials. Prev Cardiol. 2003;6:8–16.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Leary SD, Ness AR, Smith GD, Mattocks C, Deere K, Blair SN, et al. Physical activity and blood pressure in childhood: findings from a population-based study. Hypertension. 2008;51:92–8.

    Article  CAS  PubMed  Google Scholar 

  74. Steinberger J, Daniels SR, Hagberg N, Isasi CR, Kelly AS, Lloyd-Jones D, et al. Cardiovascular health promotion in children: challenges and opportunities for 2020 and beyond: a scientific statement from the American Heart Association. Circulation. 2016;134:e236-55.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Messerli FH, Bangalore S, Julius S. Risk/benefit assessment of beta-blockers and diuretics precludes their use for first-line therapy in hypertension. Circulation. 2008;117:2706–15.

    Article  PubMed  Google Scholar 

  76. Gatzoulis MA. Adult congenital heart disease: a cardiovascular area of growth in urgent need of additional resource allocation. Int J Cardiol. 2004;97(Suppl 1):1–2 (discussion 2715).

    Article  PubMed  Google Scholar 

  77. Giannakoulas G, Dimopoulos K, Engel R, Goktekin O, Kucukdurmaz Z, Vatankulu MA, et al. Burden of coronary artery disease in adults with congenital heart disease and its relation to congenital and traditional heart risk factors. Am J Cardiol. 2009;103:1445–50.

    Article  PubMed  Google Scholar 

  78. Lui GK, Fernandes S, McElhinney DB. Management of cardiovascular risk factors in adults with congenital heart disease. J Am Heart Assoc. 2014;3:e001076.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lui GK, Rogers IS, Ding VY, Hedlin HK, MacMillen K, Maron DJ, et al. Risk estimates for atherosclerotic cardiovascular disease in adults with congenital heart disease. Am J Cardiol. 2017;119:112–8.

    Article  PubMed  Google Scholar 

  80. Roche SL, Silversides CK. Hypertension, obesity, and coronary artery disease in the survivors of congenital heart disease. Can J Cardiol. 2013;29:841–8.

    Article  PubMed  Google Scholar 

  81. Yalonetsky S, Horlick EM, Osten MD, Benson LN, Oechslin EN, Silversides CK. Clinical characteristics of coronary artery disease in adults with congenital heart defects. Int J Cardiol. 2013;164:217–20.

    Article  PubMed  Google Scholar 

  82. de Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association. Circulation. 2019;139:e603–34.

    Article  PubMed  Google Scholar 

  83. Roberts WC. Major anomalies of coronary arterial origin seen in adulthood. Am Heart J. 1986;111:941–63.

    Article  CAS  PubMed  Google Scholar 

  84. Click RL, Holmes DR Jr, Vlietstra RE, Kosinski AS, Kronmal RA. Anomalous coronary arteries: location, degree of atherosclerosis and effect on survival–a report from the coronary artery surgery study. J Am Coll Cardiol. 1989;13:531–7.

    Article  CAS  PubMed  Google Scholar 

  85. Tanel RE, Wernovsky G, Landzberg MJ, Perry SB, Burke RP. Coronary artery abnormalities detected at cardiac catheterization following the arterial switch operation for transposition of the great arteries. Am J Cardiol. 1995;76:153–7.

    Article  CAS  PubMed  Google Scholar 

  86. Simon AB, Zloto AE. Coarctation of the aorta Longitudinal assessment of operated patients. Circulation. 1974;50:456–64.

    Article  CAS  PubMed  Google Scholar 

  87. Brouwer RM, Erasmus ME, Ebels T, Eijgelaar A. Influence of age on survival, late hypertension, and recoarctation in elective aortic coarctation repair. Including long-term results after elective aortic coarctation repair with a follow-up from 25 to 44 years. J Thorac Cardiovasc Surg. 1994;108:525–31.

    Article  CAS  PubMed  Google Scholar 

  88. Nakamura K, Stefanescu SA. Treatment of hypertension in coarctation of the aorta. Curr Treat Options Cardiovasc Med. 2016;18:40.

    Article  PubMed  Google Scholar 

  89. Vonder Muhll IF, Sehgal T, Paterson DI. The adult with repaired coarctation: need for lifelong surveillance. Can J Cardiol. 2016;32(1038):e11–5.

    Google Scholar 

  90. Pickard SS, Prakash A, Newburger JW, Malek AM, Wong JB. Screening for intracranial aneurysms in coarctation of the aorta: a decision and cost-effectiveness analysis. Circ Cardiovasc Qual Outcomes. 2020;13:e006406.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Roifman I, Therrien J, Ionescu-Ittu R, Pilote L, Guo L, Kotowycz MA, et al. Coarctation of the aorta and coronary artery disease: fact or fiction? Circulation. 2012;126:16–21.

    Article  PubMed  Google Scholar 

  92. Curtis SL, Bradley M, Wilde P, Aw J, Chakrabarti S, Hamilton M, et al. Results of screening for intracranial aneurysms in patients with coarctation of the aorta. AJNR Am J Neuroradiol. 2012;33:1182–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rinnstrom D, Dellborg M, Thilen U, Sorensson P, Nielsen NE, Christersson C, et al. Left ventricular hypertrophy in adults with previous repair of coarctation of the aorta; association with systolic blood pressure in the high normal range. Int J Cardiol. 2016;218:59–64.

    Article  PubMed  Google Scholar 

  94. Daniels SR, Loggie JM, Schwartz DC, Strife JL, Kaplan S. Systemic hypertension secondary to peripheral vascular anomalies in patients with Williams syndrome. J Pediatr. 1985;106:249–51.

    Article  CAS  PubMed  Google Scholar 

  95. Fyfe A, Perloff JK, Niwa K, Child JS, Miner PD. Cyanotic congenital heart disease and coronary artery atherogenesis. Am J Cardiol. 2005;96:283–90.

    Article  PubMed  Google Scholar 

  96. Tarp JB, Jensen AS, Engstrom T, Holstein-Rathlou NH, Sondergaard L. Cyanotic congenital heart disease and atherosclerosis. Heart. 2017;103:897–900.

  97. •• Lantin-Hermoso MR, Berger S, Bhatt AB, Richerson JE, Morrow R, Freed MD, et al. The care of children with congenital heart disease in their primary medical home. Pediatrics. 2017;140(5):e20172607. https://doi.org/10.1542/peds.2017-2607Professional society statement on modern care of congenital heart disease survivors.

Download references

Funding

This work was supported by the National Heart, Lung, and Blood Institute R01 HL148217 (J. P. Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin P. Zachariah.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zachariah, J.P. Double-Trouble: Atherosclerotic Risk Factors and Congenital Heart Disease. Curr Atheroscler Rep 25, 417–426 (2023). https://doi.org/10.1007/s11883-023-01114-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-023-01114-1

Keywords

Navigation