Skip to main content
Log in

The therapeutic potential of high-density lipoprotein mimetic agents in coronary artery disease

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Low levels of high-density lipoprotein cholesterol (HDL-C) represent a major cardiovascular risk factor that is only modestly influenced by currently available drugs. Consequently, there has been interest in developing new therapeutic agents specifically targeting HDL-C to reduce risk in patients with coronary artery disease. One strategy involves the administration of therapies that mimic HDL-C or its properties, including reconstituted HDL, apolipoprotein A-I (apoA-I), apoA-I Milano, and apoA-I mimetic peptides. The atheroprotective effects of reconstituted HDL, apoA-I, and apoA-I Milano have been well documented in animal studies, and two recent clinical trials also provided encouraging results. The most investigated apoA-I mimetic peptide, D-4F, was shown to significantly reduce atherosclerotic lesions in animal models but data in humans are scarce. HDL-C mimetic agents constitute a promising novel strategy to reduce coronary artery disease risk but require further study in larger clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Lloyd-Jones D, Adams R, Carnethon M, et al.: Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009, 119:480–486.

    Article  PubMed  Google Scholar 

  2. Gordon T, Castelli WP, Hjortland MC, et al.: High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 1977, 62:707–714.

    Article  PubMed  CAS  Google Scholar 

  3. Assmann G, Schulte H, von Eckardstein A, Huang Y: Highdensity lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis 1996, 124(Suppl):S11–S20.

    Article  Google Scholar 

  4. Cooney M, Dudina A, De Bacquer D, et al.: HDL cholesterol protects against cardiovascular disease in both genders, at all ages and at all levels of risk. Atherosclerosis 2009 Mar 19 (Epub ahead of print).

  5. Genest JJ Jr, Martin-Munley SS, McNamara JR, et al.: Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 1992, 85:2025–2033.

    PubMed  Google Scholar 

  6. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285:2486–2497.

  7. Briel M, Ferreira-Gonzalez I, You JJ, et al.: Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 2009, 338:b92.

    Article  PubMed  Google Scholar 

  8. Birjmohun RS, Hutten BA, Kastelein JJ, Stroes ES: Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials. J Am Coll Cardiol 2005, 45:185–197.

    Article  PubMed  CAS  Google Scholar 

  9. Grundy SM, Cleeman JI, Merz CN, et al.: Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004, 110:227–239.

    Article  PubMed  Google Scholar 

  10. Rader DJ: Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest 2006, 116:3090–3100.

    Article  PubMed  CAS  Google Scholar 

  11. Barter PJ, Nicholls S, Rye KA, et al.: Antiinflammatory properties of HDL. Circ Res 2004, 95:764–772.

    Article  PubMed  CAS  Google Scholar 

  12. Mineo C, Deguchi H, Griffin JH, Shaul PW: Endothelial and antithrombotic actions of HDL. Circ Res 2006, 98:1352–1364.

    Article  PubMed  CAS  Google Scholar 

  13. Dimayuga P, Zhu J, Oguchi S, et al.: Reconstituted HDL containing human apolipoprotein A-1 reduces VCAM-1 expression and neointima formation following periadventitial cuff-induced carotid injury in apoE null mice. Biochem Biophys Res Commun 1999, 264:465–468.

    Article  PubMed  CAS  Google Scholar 

  14. Barter PJ, Baker PW, Rye KA: Effect of high-density lipoproteins on the expression of adhesion molecules in endothelial cells. Curr Opin Lipidol 2002, 13:285–288.

    Article  PubMed  CAS  Google Scholar 

  15. Nicholls SJ, Cutri B, Worthley SG, et al.: Impact of short-term administration of high-density lipoproteins and atorvastatin on atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 2005, 25:2416–2421.

    Article  PubMed  CAS  Google Scholar 

  16. Navab M, Hama SY, Anantharamaiah GM, et al.: Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. J Lipid Res 2000, 41:1495–1508.

    PubMed  CAS  Google Scholar 

  17. Navab M, Hama SY, Cooke CJ, et al.: Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J Lipid Res 2000, 41:1481–1494.

    PubMed  CAS  Google Scholar 

  18. Mackness B, Hine D, Liu Y, et al.: Paraoxonase-1 inhibits oxidised LDL-induced MCP-1 production by endothelial cells. Biochem Biophys Res Commun 2004, 318:680–683.

    Article  PubMed  CAS  Google Scholar 

  19. Reddy ST, Wadleigh DJ, Grijalva V, et al.: Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. Arterioscler Thromb Vasc Biol 2001, 21:542–547.

    PubMed  CAS  Google Scholar 

  20. Marathe GK, Zimmerman GA, McIntyre TM: Platelet-activating factor acetylhydrolase, and not paraoxonase-1, is the oxidized phospholipid hydrolase of high density lipoprotein particles. J Biol Chem 2003, 278:3937–3947.

    Article  PubMed  CAS  Google Scholar 

  21. Forte TM, Subbanagounder G, Berliner JA, et al.: Altered activities of anti-atherogenic enzymes LCAT, paraoxonase, and platelet-activating factor acetylhydrolase in atherosclerosis-susceptible mice. J Lipid Res 2002, 43:477–485.

    Article  PubMed  CAS  Google Scholar 

  22. Yuhanna IS, Zhu Y, Cox BE, et al.: High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 2001, 7:853–857.

    Article  PubMed  CAS  Google Scholar 

  23. Fleisher LN, Tall AR, Witte LD, et al.: Stimulation of arterial endothelial cell prostacyclin synthesis by high density lipoproteins. J Biol Chem 1982, 257:6653–6655.

    PubMed  CAS  Google Scholar 

  24. Bombeli T, Schwartz BR, Harlan JM: Endothelial cells undergoing apoptosis become proadhesive for nonactivated platelets. Blood 1999, 93:3831–3838.

    PubMed  CAS  Google Scholar 

  25. Griffin JH, Kojima K, Banka CL, et al.: High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C. J Clin Invest 1999, 103:219–227.

    Article  PubMed  CAS  Google Scholar 

  26. Orekhov AN, Misharin A, Tertov VV, et al.: Artificial HDL as an anti-atherosclerotic drug. Lancet 1984, 2:1149–1150.

    Article  PubMed  CAS  Google Scholar 

  27. Badimon JJ, Badimon L, Galvez A, et al.: High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits. Lab Invest 1989, 60:455–461.

    PubMed  CAS  Google Scholar 

  28. Badimon JJ, Badimon L, Fuster V: Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest 1990, 85:1234–1241.

    Article  PubMed  CAS  Google Scholar 

  29. Miyazaki A, Sakuma S, Morikawa W, et al.: Intravenous injection of rabbit apolipoprotein A-I inhibits the progression of atherosclerosis in cholesterol-fed rabbits. Arterioscler Thromb Vasc Biol 1995, 15:1882–1888.

    PubMed  CAS  Google Scholar 

  30. Franceschini G, Sirtori CR, Capurso A 2nd, et al.: A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Invest 1980, 66:892–900.

    Article  PubMed  CAS  Google Scholar 

  31. Bielicki JK, Oda MN: Apolipoprotein A-I(Milano) and apolipoprotein A-I(Paris) exhibit an antioxidant activity distinct from that of wild-type apolipoprotein A-I. Biochemistry 2002, 41:2089–2096.

    Article  PubMed  CAS  Google Scholar 

  32. Ameli S, Hultgardh-Nilsson A, Cercek B, et al.: Recombinant apolipoprotein A-I Milano reduces intimal thickening after balloon injury in hypercholesterolemic rabbits. Circulation 1994, 90:1935–1941.

    PubMed  CAS  Google Scholar 

  33. Shah PK, Nilsson J, Kaul S, et al.: Effects of recombinant apolipoprotein A-I(Milano) on aortic atherosclerosis in apolipoprotein E-deficient mice. Circulation 1998, 97:780–785.

    PubMed  CAS  Google Scholar 

  34. Kaul S, Coin B, Hedayiti A, et al.: Rapid reversal of endothelial dysfunction in hypercholesterolemic apolipoprotein E-null mice by recombinant apolipoprotein A-I(Milano)-phospholipid complex. J Am Coll Cardiol 2004, 44:1311–1319.

    Article  PubMed  CAS  Google Scholar 

  35. Shah PK, Yano J, Reyes O, et al.: High-dose recombinant apolipoprotein A-I(Milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein e-deficient mice. Potential implications for acute plaque stabilization. Circulation 2001, 103:3047–3050.

    Article  PubMed  CAS  Google Scholar 

  36. Kaul S, Rukshin V, Santos R, et al.: Intramural delivery of recombinant apolipoprotein A-IMilano/phospholipid complex (ETC-216) inhibits in-stent stenosis in porcine coronary arteries. Circulation 2003, 107:2551–2554.

    Article  PubMed  CAS  Google Scholar 

  37. Anantharamaiah GM, Jones JL, Brouillette CG, et al.: Studies of synthetic peptide analogs of the amphipathic helix. Structure of complexes with dimyristoyl phosphatidylcholine. J Biol Chem 1985, 260:10248–10255.

    PubMed  CAS  Google Scholar 

  38. Datta G, Chaddha M, Hama S, et al.: Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide. J Lipid Res 2001, 42:1096–1104.

    PubMed  CAS  Google Scholar 

  39. Garber DW, Datta G, Chaddha M, et al.: A new synthetic class A amphipathic peptide analogue protects mice from diet-induced atherosclerosis. J Lipid Res 2001, 42:545–552.

    PubMed  CAS  Google Scholar 

  40. Navab M, Anantharamaiah GM, Hama S, et al.: Oral administration of an Apo A-I mimetic Peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 2002, 105:290–292.

    Article  PubMed  CAS  Google Scholar 

  41. Van Lenten BJ, Wagner AC, Navab M, et al.: Lipoprotein inflammatory properties and serum amyloid A levels but not cholesterol levels predict lesion area in cholesterol-fed rabbits. J Lipid Res 2007, 48:2344–2353.

    Article  PubMed  Google Scholar 

  42. Navab M, Anantharamaiah GM, Hama S, et al.: D-4F and statins synergize to render HDL antiinflammatory in mice and monkeys and cause lesion regression in old apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 2005, 25:1426–1432.

    Article  PubMed  CAS  Google Scholar 

  43. Ansell BJ, Navab M, Hama S, et al.: Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 2003, 108:2751–2756.

    Article  PubMed  CAS  Google Scholar 

  44. Bloedon LT, Dunbar R, Duffy D, et al.: Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J Lipid Res 2008, 49:1344–1352.

    Article  PubMed  CAS  Google Scholar 

  45. Eriksson M, Carlson LA, Miettinen TA, Angelin B: Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I. Potential reverse cholesterol transport in humans. Circulation 1999, 100:594–598.

    PubMed  CAS  Google Scholar 

  46. Nanjee MN, Cooke CJ, Garvin R, et al.: Intravenous apoA-I/lecithin discs increase pre-beta-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans. J Lipid Res 2001, 42:1586–1593.

    PubMed  CAS  Google Scholar 

  47. Kujiraoka T, Nanjee MN, Oka T, et al.: Effects of intravenous apolipoprotein A-I/phosphatidylcholine discs on LCAT, PLTP, and CETP in plasma and peripheral lymph in humans. Arterioscler Thromb Vasc Biol 2003, 23:1653–1659.

    Article  PubMed  CAS  Google Scholar 

  48. Nissen SE, Tsunoda T, Tuzcu EM, et al.: Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 2003, 290:2292–2300.

    Article  PubMed  CAS  Google Scholar 

  49. Tardif JC, Gregoire J, L’Allier PL, et al.: Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 2007, 297:1675–1682.

    Article  PubMed  Google Scholar 

  50. Waters D, Higginson L, Gladstone P, et al.: Effects of monotherapy with an HMG-CoA reductase inhibitor on the progression of coronary atherosclerosis as assessed by serial quantitative arteriography. The Canadian Coronary Atherosclerosis Intervention Trial. Circulation 1994, 89:959–968.

    PubMed  CAS  Google Scholar 

  51. Jukema JW, Bruschke AV, van Boven AJ, et al.: Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995, 91:2528–2540.

    PubMed  CAS  Google Scholar 

  52. Waters D, Craven TE, Lesperance J: Prognostic significance of progression of coronary atherosclerosis. Circulation 1993, 87:1067–1075.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Tardif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, P., Nigam, A., Marcil, M. et al. The therapeutic potential of high-density lipoprotein mimetic agents in coronary artery disease. Curr Atheroscler Rep 11, 329–333 (2009). https://doi.org/10.1007/s11883-009-0049-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-009-0049-z

Keywords

Navigation