Skip to main content
Log in

Targeting High-Density Lipoproteins: Increasing De Novo Production Versus Decreasing Clearance

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Although cardiovascular mortality has been decreasing in industrialized countries, there continues to be a substantial residual risk; thus, novel therapeutic agents and new targets of therapy have been sought. One highly plausible therapeutic target is high-density lipoprotein (HDL). HDL is a key player in reverse cholesterol transport and possesses a slew of other cardioprotective properties; however, recent trials with agents known to increase HDL levels have generally not shown any reduction in cardiovascular events. Further analysis of these trials suggest that fibrates have consistently reduced some cardiovascular outcomes, at least in the subgroup of patients with high serum triglycerides and low HDL cholesterol (HDLc) levels. Since fibrates, unlike niacin or cholesterol ester transfer protein inhibitors, increase HDLc level mostly through the stimulation of apolipoprotein A-I production, it is suggested that the quality and functionality of HDL are enhanced when de novo synthesis rather than inhibition of turnover is the mechanism of increasing HDL level. In this communication, the evidence for and against the cardioprotective properties of HDL is reviewed and the contemporary clinical trials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. Cholesterol efflux and atherprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125:1905–19.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Alwalli K, Awan Z, Alshahrani A, Genest J. High-density lipoproteins and cardiovascular disease: 2010 update. Expert Rev Cardiovasc Ther. 2010;8:413–23.

    Article  Google Scholar 

  3. Barter P. HDL-C: role as a risk modifier. Atherosclerosis Suppl. 2011;12:267–70.

    Article  CAS  Google Scholar 

  4. Soran H, Hama S, Yadav R, Durrington PN. HDL functionality. Curr Opin Lipidol. 2012;23:353–66.

    Article  CAS  PubMed  Google Scholar 

  5. Gordon DJ, Rifkind BM. High-density lipoprotein-the clinical implications of recent studies. N Engl J Med. 1989;321:1311–6.

    Article  CAS  PubMed  Google Scholar 

  6. Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, Grundy SM, Treating to New Targets Investigators, et al. HDL cholesterol very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007;357:1301–10.

    Article  CAS  PubMed  Google Scholar 

  7. Iatan I, Palmyre A, Alrasheed S, Ruel I, Genest J. Genetics of cholesterol efflux. Curr Atheroscler Rep. 2012;14:235–46.

    Article  CAS  PubMed  Google Scholar 

  8. Calabresi L, Simonelli S, Gomaraschi M, Franceschini G. Genetic lecithin: cholesterol acyltransferase deficiency and cardiovascular disease. Atherosclerosis. 2012;222:299–306.

    Article  CAS  PubMed  Google Scholar 

  9. Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature. 1991;353:265–7.

    Article  CAS  PubMed  Google Scholar 

  10. Plump AS, Scott CJ, Breslow JL. Human apolipoprotein A-I gene expression increases high-density lipoprotein and suppresses atherosclerosis in the apolipoprotein E deficient mouse. Proc Natl Acad Sci. 1994;91:9607–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Duverger N, Kruth H, Emmanuel F, Caillaud JM, Viglietta C, Castro G, et al. Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits. Circulation. 1996;94:713–7.

    Article  CAS  PubMed  Google Scholar 

  12. Benoit P, Emmanuel F, Cailaud JM, Bassinet L, Castro G, Gallix P, et al. Somatic gene transfer of human apo A-I inhibits atherosclerosis progression in mouse models. Circulation. 1999;99:105–10.

    Article  CAS  PubMed  Google Scholar 

  13. Tangirala RK, Tsukamoto K, Chun SH, Usher D, Puré E, Rader DJ. Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation. 1999;100:1816–22.

    Article  CAS  PubMed  Google Scholar 

  14. Nissen SE, Tsunoda T, Tuzcu EM, Schoenhagen P, Cooper CJ, Yasin M, et al. Effect of recombinant apo A-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290:2292–300.

    Article  CAS  PubMed  Google Scholar 

  15. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291:1071–80.

    Article  CAS  PubMed  Google Scholar 

  16. Tardif JC, Ballantyne CM, Barter P, Dasseux JL, Fayad ZA, Guertin MC, et al. Can HDL Infusions Significantly QUicken Atherosclerosis REgression (CHI-SQUARE) Investigators. Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur Heart J. 2014;35:3277–86.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Tardif JC, Grégoire J, L’Allier PL, Ibrahim R, Lespérance J, Heinonen TM, et al. Effect of rHDL on Atherosclerosis-Safety and Efficacy (ERASE) Investigators. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA. 2007;297:1675–82.

    Article  PubMed  Google Scholar 

  18. Rubins HB, Rogins SJ, Collins D, Fye CL, Anderson JW, Elam MB, et al. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. N Engl J Med. 1999;341:410–8.

    Article  CAS  PubMed  Google Scholar 

  19. Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317:1237–45.

    Article  CAS  PubMed  Google Scholar 

  20. Brunner D, Agmon J, Kaplinsky E. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation. 2000;102:21–7.

    Article  Google Scholar 

  21. Goldenberg I, Benderly M. Goldbourt U; BIP Study Group. Secondary prevention with bezafibrate therapy for the treatment of dyslipidemia: an extended follow-up of the BIP trial. J Am Coll Cardiol. 2008;51:459–65.

    Article  CAS  PubMed  Google Scholar 

  22. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al. FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61.

    Article  CAS  PubMed  Google Scholar 

  23. ACCORD Study Group, Ginsberg HN, Elam MB, Lovato LC, Crouse JR 3rd, Leiter LA, Linz P, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74.

    Article  Google Scholar 

  24. Newman AB, Glynn NW, Taylor CA, Sebastiani P, Perls TT, Mayeux R, et al. Health and function of participants in the Long Live Family Study: a comparison with other cohorts. Aging (Albany NY). 2011;3:63–76.

    PubMed Central  PubMed  Google Scholar 

  25. Rahilly-Tierney CR, Spiro A 3rd, Vokonas P, Gasiano JM. Relation between high-density lipoprotein cholesterol and survival to age 85 years in men (from the VA normative aging study). Am J Cardiol. 2011;107:1173–7.

    Article  CAS  PubMed  Google Scholar 

  26. Odden MC, Shilipak MG, Whitson HE, Katz R, Kearney PM, Defilippi C, et al. Risk factors for cardiovascular disease across the spectrum of older age: the Cardiovascular Health Study. Atherosclerosis. 2014;237:336–42.

    Article  CAS  PubMed  Google Scholar 

  27. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomization study. Lancet. 2012;380:572–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Haase CL, Tybjærg-Hansen A, Qayyum AA, Schou J, Nordestgaard BG, Frikke-Schmidt R. LCAT, HDL cholesterol, and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metabol. 2012;97:E248–56.

    Article  CAS  Google Scholar 

  29. LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352:1425–35.

    Article  CAS  PubMed  Google Scholar 

  30. Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, for the JUPITER Study Group, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    Article  CAS  PubMed  Google Scholar 

  31. AIM-HIGH Investigators, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.

    Article  Google Scholar 

  32. HPS2-THRIVE Collaborative Group, Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, Tomson J, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–12.

    Article  Google Scholar 

  33. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, ILLUMINATE Investigators, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.

    Article  CAS  PubMed  Google Scholar 

  34. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.

    Article  CAS  PubMed  Google Scholar 

  35. Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, the dal-PLAQUE Investigators, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomized clinical trial. Lancet. 2011;378:1547–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Luscher TF, Taddei S, Kaski JC, Jukema JW, Kallend D, Munzel T, the dal-VESSEL Investigators, et al. Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: the dal-VESSEL randomized clinical trial. Eur Heart J. 2012;33:857–65.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Hooper AJ, Burnett JR. Dalcetrapib, a cholesterol ester transfer protein modulator. Drugs. 2012;21:1427–32.

    CAS  Google Scholar 

  38. Niesor EJ. Different effects of compounds decreasing cholesteryl ester transfer protein activity on lipoprotein metabolism. Curr Opin Lipidol. 2011;22:288–95.

    Article  CAS  PubMed  Google Scholar 

  39. Hu X, Dietz JD, Xia C, Knight DR, Loging WT, Smith AH, et al. Torcetrapib induces aldosterone and cortisol production by an intracellular calcium-mediated mechanism independently of cholesteryl ester transfer protein inhibition. Endocrinol. 2009;150:2211–9.

    Article  CAS  Google Scholar 

  40. Nicholls SJ, Tizcu EM, Brennan DM, Tardif JC, Nissen SE. Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation. 2008;118:2506–14.

    Article  CAS  PubMed  Google Scholar 

  41. Barter PJ, Brandrup-Wognsen G, Palmer MK, Nicholls SJ. Effect of statins on HDLc: a complex process unrelated to changes in LDLc: analysis of the VOYAGER Database. J Lipid Res. 2010;51:1546–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ridker PM, Genest J, Bockholdt SM, Libby P, Gotto AM, Nordestgaard BG, the JUPITER Trial Study Group, et al. HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial. Lancet. 2010;376:333–9.

    Article  CAS  PubMed  Google Scholar 

  43. Aronoff S, Rosenblatt S, Braithwaite S, Egan JW, Mathisen AL, Schneider RL. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of diabetes: a 6-month study randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care. 2000;23:1605–11.

    Article  CAS  PubMed  Google Scholar 

  44. Dormandy JA, Charbonnel B, Ekland DJ, Erdmann E, Massi-Benedetti M, Moules IK, PROactive investigators, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitazone Clinical Trial in MacroVascular Events): a randomized controlled trial. Lancet. 2005;366:1279–89.

    Article  CAS  PubMed  Google Scholar 

  45. Singh IM, Shishehbor MH, Ansell BJ. High-density lipoprotein as a therapeutic target: a systematic review. JAMA. 2007;298:786–98.

    Article  CAS  PubMed  Google Scholar 

  46. Lamon-Fava LH, Diffenderfer MR, Barrett PH, Buchsbaum A, Nyaku M, Horvath KV, et al. Extended-release niacin alters the metabolism of plasma apolipoprotein (apo) A-I and apoB-containing lipoproteins. Arterioscler Thromb Vasc Biol. 2008;28:1672–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Haas MJ, Razzak-Alamir A, Sultan S, Chehade JM, Wong NCW, Mooradian AD. Nicotinic acid induces apo A-I gene expression in HepG2 and Caco-2 cell lines. Metabolism. 2011;60:1790–6.

    Article  CAS  PubMed  Google Scholar 

  48. Vu-Dac N, Schoonjans K, Laine B, Fruchart JC, Auwerx J, Staels B. Negative regulation of the human apolipoprotein A-I promoter by fibrates can be attenuated by the interaction of the peroxisome proliferator-activated receptor with its response element. J Biol Chem. 1994;269:31012–8.

    CAS  PubMed  Google Scholar 

  49. Vu-Dac N, Chopin-Delannoy S, Gervois P, Bonnelye E, Martin G, Fruchart JC, et al. The nuclear receptors peroxisome proliferator-activated receptor α and Rev-erbα mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. J Biol Chem. 1998;273:25713–20.

    Article  CAS  PubMed  Google Scholar 

  50. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98:2088–93.

    Article  CAS  PubMed  Google Scholar 

  51. Pineda Torra I, Gervois P, Staels B. Peroxisome proliferator-activated receptor alpha in metabolic disease, inflammation, and atherosclerosis. Curr Opin Lipidol. 1999;10:151–9.

    Article  CAS  PubMed  Google Scholar 

  52. Marx N, Duez H, Fruchart J-C, Staels B. Peroxisome proliferator-activated receptors and atherogenesis. Regulators of gene expression in vascular cells. Circ Res. 2004;94:1168–78.

    Article  CAS  PubMed  Google Scholar 

  53. Savage DB. PPAR gamma as a metabolic regulator: insights from genomics and pharmacology. Expert Rev Mol Med. 2005;7:1–16.

    Article  PubMed  Google Scholar 

  54. Sakamoto J, Kimura H, Moriyama S, Odaka H, Momose Y, Sugiyama Y, et al. Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun. 2000;278:704–11.

    Article  CAS  PubMed  Google Scholar 

  55. McNeish J, Aiello RJ, Guyot D, Turi T, Gabel C, Aldinger C, et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette tranporter-1. Proc Natl Acad Sci. 2000;97:4245–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Wang N, Lan D, Chen W, Matsuura F, Tall AR. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABCA1. J Biol Chem. 2000;275:33053–8.

    Article  CAS  PubMed  Google Scholar 

  57. Shao B, Cavigiolio G, Brot N, Oda MN, Heinecke JW. Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proc Natl Acad Sci. 2008;105:12224–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Shao B, Pennathur S, Pagani I, Oda MN, Witztum JL, Oram JF, et al. Modifying apolipoprotein A-I by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway. J Biol Chem. 2010;285:18473–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Undurti A, Huang Y, Lupica JA, Smith JD, DiDonato JA, Hazen SL. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J Biol Chem. 2009;284:30825–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Zhang M, Gao X, Wu J, Liu D, Cai H, Fu L, et al. Oxidized high-density lipoprotein enhances inflammatory activity in rat mesangial cells. Diabetes Metabol Res Rev. 2010;26:455–63.

    Article  CAS  Google Scholar 

  61. Oram JF. Receptor-mediated transport of cholesterol between cultured cells and high-density lipoproteins. Methods Enzymol. 1986;129:645–59.

    Article  CAS  PubMed  Google Scholar 

  62. Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cells adhesion molecules. Arterioscler Thromb Vasc Biol. 1995;15:1987–94.

    Article  CAS  PubMed  Google Scholar 

  63. Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidiation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004;114:529–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Toth PP, Barter PJ, Rosenson RS, Boden WE, Chapman MJ, Cuchel M, et al. High-density lipoproteins: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7:484–525.

    Article  PubMed  Google Scholar 

  65. Lincoff AM, Tardif JC, Schwartz GG, Nicholls SJ, Rydén L, Neal B, AleCardio Investigators, et al. Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. JAMA. 2014;311:1515–25.

    Article  PubMed  Google Scholar 

  66. Doggrell SA. Muraglitazar: beneficial or detrimental in the treatment of type 2 diabetes? Expert Opin Pharmacother. 2006;7:1229–33.

    Article  CAS  PubMed  Google Scholar 

  67. Fievet C, Fruchart JC, Staels B. PPARα and PPARγ dual agonists for the treatment of type 2 dibetes and the metabolic syndrome. Curr Opin Pharmacol. 2007;6:606–14.

    Article  Google Scholar 

  68. Pai V, Paneerselvam A, Mukhopadhyay S, et al. A multicenter, prospective, randomized, double-blind study to evaluate the safety and efficacy of saroglitazar 2 and 4 mg compared to pioglitazone 45 mg in diabetic dyslipidemia (PRESS V). Diabetes Sci Technol. 2014;8:132–41.

    Article  CAS  Google Scholar 

  69. Jani RH, Pai V, Jha P, et al. A multicenter, prospective, randomized, double-blind study to evaluate the safety and efficacy of Saroglitazar 2 and 4 mg compared with placebo in type 2 diabetes mellitus patients having hypertriglyceridemia not controlled with atorvastatin therapy (PRESS VI). Diabetes Technol Ther. 2014;16:63–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Jani RH, Kansagra K, Jain MR, et al. Pharmacokinetics, safety, and tolerability of saroglitazar (ZYH1), a predominantly PPARα agonist with moderate PPARγ agonist activity in healthy human subjects. Clin Drug Investig. 2013;33:809–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Bailey D, Jahagirdar R, Gordon A, Hafiane A, Campbell S, Chatur S, et al. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J Am Coll Cardiol. 2010;55:2580–9.

    Article  CAS  PubMed  Google Scholar 

  72. Picaud S, Wells C, Felletar I, Brotherton D, Martin S, Savitsky P, et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc Natl Acad Sci. 2013;110:19754–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Nicholls SJ, Gordon A, Johannson J, Ballantyne CM, Barter PJ, Brewer HB, et al. ApoA-I induction as a potential cardioprotective strategy: rationale for the SUSTAIN and ASSURE studies. Cardiovasc Drugs Ther. 2012;26:181–7.

    Article  CAS  PubMed  Google Scholar 

  74. Resverlogix. Further analysis of the ASSURE data finds a responder group for RVX-208 with statistically significant regression of coronary atherosclerosis [press release]. 2013. Available at: http://www.resverlogix.com/media/press-release.html?id=492. Accessed 6 Mar 2015.

  75. Resverlogix. RVX-208 leads to a 77 % relative risk reduction of major adverse cardiovascular events (MACE) in patients with diabetes mellitus [press release]. 2014. Available at: http://www.resverlogix.com/media/press-release.html?id=508. Accessed 6 Mar 2015.

  76. Resverlogix. Resverlogix presents at Biotech Showcase during JP Morgan week [press release]. 2015. Available at: http://www.resverlogix.com/media/press-release.html?id=512. Accessed 6 Mar 2015.

  77. Navab M, Schechter I, Anantharamaiah GM, et al. Structure and function of HDL mimetics. Arterioscler Thromb Vasc Biol. 2010;30:164–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Haas MJ, Mooradian AD. Therapeutic interventions to enhance apolipoprotein A-I-mediated cardioprotection. Drugs. 2010;70:805–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosures

No external funding was used in the preparation of this manuscript. Arshag D. Mooradian and Michael J. Haas have no potential conflicts of interest that might be relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshag D. Mooradian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mooradian, A.D., Haas, M.J. Targeting High-Density Lipoproteins: Increasing De Novo Production Versus Decreasing Clearance. Drugs 75, 713–722 (2015). https://doi.org/10.1007/s40265-015-0390-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-015-0390-1

Keywords

Navigation