Skip to main content

Advertisement

Log in

The Role of New IL-1 Family Members (IL-36 and IL-38) in Atopic Dermatitis, Allergic Asthma, and Allergic Rhinitis

  • Basic and Applied Science (I Lewkowich, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Since the discovery of its very first member in 1974, the IL-1 family has expanded into a group of 11 potent molecules which are essential in both innate and acquired immunity. Pro-inflammatory cytokines IL-36α, IL-36β, and IL-36γ and their receptor antagonists IL-36Ra and IL-38, which belong to the IL-36 subfamily, are some of the most recently identified members. Recent studies show that these members possess pro-inflammatory and anti-inflammatory activities and may take part in the pathogenesis of allergy. In this review, the involvement and importance of these newly described IL-1 family members in the most common allergic diseases, i.e., atopic dermatitis (AD), allergic asthma, and allergic rhinitis, will be discussed.

Recent Findings

Dysregulation of IL-36 and IL-38 was observed in the skin and respiratory tract of AD, allergic rhinitis, and allergic asthma individuals. Although the upregulation in IL-36α and IL-36γ observed in the lesional skin of AD patients was unexpectedly small, IL-36 may play an important role in AD pathogenesis especially upon Staphylococcus aureus colonization. While IL-36γ regulates eosinophils to induce an inflammatory response in allergic rhinitis, IL-36α was found to regulate Th17 immunity. IL-36 receptor antagonists, IL-36Ra and IL-38, however, both show promising anti-inflammatory activities against allergic asthma. Of note, IL-38 in allergic asthmatic children is significantly lower than their healthy counterparts, while the anti-inflammatory effects of IL-38 in allergic asthma exacerbation upon viral-like infection were demonstrated in in vitro, HDM-induced, and humanized mice models.

Summary

Dysregulated expression of IL-36 and IL-38 observed in allergic patients and mice models revealed that they may have essential roles in the pathogenesis in AD, allergic rhinitis, and allergic asthma, especially during the host defense against pathogens at inflammatory sites. Their receptor antagonists, IL-36Ra and IL-38, could also be promising biologics in the control of allergy. Since allergic diseases are phenotypically complex, contradictory data obtained in different studies may be explained if further stratification of disease endotypes is explored. Genetically modified mice model and investigation in anti-IL-36 treatment may be useful to characterize the therapeutic potential of these cytokines in the regulation of allergy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. de Monchy JG, Demoly P, Akdis CA, Cardona V, Papadopoulos NG, Schmid-Grendelmeier P, et al. Allergology in Europe, the blueprint. Allergy. 2013;68(10):1211–8.

    Article  PubMed  Google Scholar 

  2. Lloyd-Lavery A, Solman L, Grindlay DJC, Rogers NK, Thomas KS, Harman KE. What’s new in atopic eczema? An analysis of systematic reviews published in 2016. Part 2: epidemiology, aetiology and risk factors. Clin Exp Dermatol. 2019;44(4):370–5.

    Article  CAS  PubMed  Google Scholar 

  3. Egawa G, Weninger W. Pathogenesis of atopic dermatitis: a short review. Cogent Biol. 2015;1(1):1103459.

  4. Nowicka D, Grywalska E. The role of immune defects and colonization of Staphylococcus aureus in the pathogenesis of atopic dermatitis. Anal Cell Pathol (Amst). 2018;2018:1956403.

    Google Scholar 

  5. Sugaya M. The role of Th17-related cytokines in atopic dermatitis. Int J Mol Sci. 2020;21(4):1314.

  6. Network GA. The Global Asthma Report 2018. Auckland 2018.

  7. Gavala ML, Bashir H, Gern JE. Virus/allergen interactions in asthma. Curr Allergy Asthma Rep. 2013;13(3):298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeffery PK, Haahtela T. Allergic rhinitis and asthma: inflammation in a one-airway condition. BMC Pulm Med. 2006;6(Suppl 1):S5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 2008;63(Suppl 86):8–160.

    Article  PubMed  Google Scholar 

  10. Chong SN, Chew FT. Epidemiology of allergic rhinitis and associated risk factors in Asia. World Allergy Organ J. 2018;11(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dykewicz MS, Hamilos DL. Rhinitis and sinusitis. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S103–15.

    Article  PubMed  Google Scholar 

  12. Qing M, Yongge L, Wei X, Yan W, Zhen L, Yixin R, et al. Comparison of Th17 cells mediated immunological response among asthmatic children with or without allergic rhinitis. Asian Pac J Allergy Immunol. 2019;37(2):65–72.

    CAS  PubMed  Google Scholar 

  13. •• Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281(1):8–27 Comprehensive review for the immunological roles of IL-1 family cytokine in innate and acquired immunity.

  14. van de Veerdonk FL, Netea MG. New insights in the immunobiology of IL-1 family members. Front Immunol. 2013;4:167.

    PubMed  PubMed Central  Google Scholar 

  15. Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol. 2010;11(11):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jia H, Liu J, Han B. Reviews of interleukin-37: functions, receptors, and roles in diseases. Biomed Res Int. 2018;2018:3058640.

    PubMed  PubMed Central  Google Scholar 

  17. Liu W, Deng L, Chen Y, Sun C, Wang J, Zhou L, et al. Anti-inflammatory effect of IL-37b in children with allergic rhinitis. Mediat Inflamm. 2014;2014:746846.

    Google Scholar 

  18. Lunding L, Webering S, Vock C, Schroder A, Raedler D, Schaub B, et al. IL-37 requires IL-18Ralpha and SIGIRR/IL-1R8 to diminish allergic airway inflammation in mice. Allergy. 2015;70(4):366–73.

    Article  CAS  PubMed  Google Scholar 

  19. Berraies A, Hamdi B, Ammar J, Hamzaoui K, Hamzaoui A. Increased expression of thymic stromal lymphopoietin in induced sputum from asthmatic children. Immunol Lett. 2016;178:85–91.

    Article  CAS  PubMed  Google Scholar 

  20. Lunding L, Webering S, Vock C, Schroder A, Raedler D, Schaub B, et al. Effect of IL-37 on allergic airway inflammation. Ann Am Thorac Soc. 2016;13(Suppl 1):S95–6.

    PubMed  Google Scholar 

  21. Huang N, Liu K, Liu J, Gao X, Zeng Z, Zhang Y, et al. Interleukin-37 alleviates airway inflammation and remodeling in asthma via inhibiting the activation of NF-kappaB and STAT3 signalings. Int Immunopharmacol. 2018;55:198–204.

    Article  CAS  PubMed  Google Scholar 

  22. Elfeky OA, Abed NT, Emam SM, Elsayed HA. Assessment of serum level of interleukin-37 in asthmatic children at Benha University Hospital. Egypt J Immunol. 2018;25(2):53–60.

    PubMed  Google Scholar 

  23. Lv J, Xiong Y, Li W, Cui X, Cheng X, Leng Q, et al. IL-37 inhibits IL-4/IL-13-induced CCL11 production and lung eosinophilia in murine allergic asthma. Allergy. 2018;73(8):1642–52.

    Article  CAS  PubMed  Google Scholar 

  24. Meng P, Chen ZG, Zhang TT, Liang ZZ, Zou XL, Yang HL, et al. IL-37 alleviates house dust mite-induced chronic allergic asthma by targeting TSLP through the NF-kappaB and ERK1/2 signaling pathways. Immunol Cell Biol. 2019;97(4):403–15.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu J, Dong J, Ji L, Jiang P, Leung TF, Liu D, et al. Anti-allergic inflammatory activity of interleukin-37 is mediated by novel signaling cascades in human eosinophils. Front Immunol. 2018;9:1445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kim DH, Kim SW, Kim SW, Kang JM. Interleukin-37 relieves allergic inflammation in a house dust mite allergic rhinitis murine model. Iran J Allergy Asthma Immunol. 2017;16(5):404–17.

    PubMed  Google Scholar 

  27. Li C, Shen Y, Wang J, Ma ZX, Ke X, Wang ZH, et al. Increased expression of IL-1R8 and a possible immunomodulatory role of its ligand IL-37 in allergic rhinitis patients. Int Immunopharmacol. 2018;60:152–9.

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Shen Y, Li C, Liu C, Wang ZH, Li YS, et al. IL-37 attenuates allergic process via STAT6/STAT3 pathways in murine allergic rhinitis. Int Immunopharmacol. 2019;69:27–33.

    Article  CAS  PubMed  Google Scholar 

  29. Lunding L, Schroder A, Wegmann M. Allergic airway inflammation: unravelling the relationship between IL-37, IL-18Ralpha and Tir8/SIGIRR. Expert Rev Respir Med. 2015;9(6):739–50.

    Article  CAS  PubMed  Google Scholar 

  30. Hu D. Role of anti-inflammatory cytokines IL-35 and IL-37 in asthma. Inflammation. 2017;40(2):697–707.

    Article  CAS  PubMed  Google Scholar 

  31. Conti P, Ronconi G, Caraffa A, Lessiani G, Duraisamy K. IL-37 a new IL-1 family member emerges as a key suppressor of asthma mediated by mast cells. Immunol Investig. 2017;46(3):239–50.

    Article  CAS  Google Scholar 

  32. Conti P, Carinci F, Lessiani G, Spinas E, Kritas SK, Ronconi G, et al. Potential therapeutic use of IL-37: a key suppressor of innate immunity and allergic immune responses mediated by mast cells. Immunol Res. 2017;65(5):982–6.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang L, Zhang J, Gao P. The potential of interleukin-37 as an effective therapeutic agent in asthma. Respir Res. 2017;18(1):192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Shilovskiy IP, Dyneva ME, Kurbacheva OM, Kudlay DA, Khaitov MR. The role of interleukin-37 in the pathogenesis of allergic diseases. Acta Nat. 2019;11(4):54–64.

    Article  CAS  Google Scholar 

  35. Huang Z, Xie L, Li H, Liu X, Bellanti JA, Zheng SG, et al. Insight into interleukin-37: the potential therapeutic target in allergic diseases. Cytokine Growth Factor Rev. 2019;49:32–41.

    Article  CAS  PubMed  Google Scholar 

  36. Towne JE, Renshaw BR, Douangpanya J, Lipsky BP, Shen M, Gabel CA, et al. Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36alpha, IL-36beta, and IL-36gamma) or antagonist (IL-36Ra) activity. J Biol Chem. 2011;286(49):42594–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gabay C, Towne JE. Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J Leukoc Biol. 2015;97(4):645–52.

    Article  CAS  PubMed  Google Scholar 

  38. Murrieta-Coxca JM, Rodriguez-Martinez S, Cancino-Diaz ME, Markert UR, Favaro RR, Morales-Prieto DM. IL-36 cytokines: regulators of inflammatory responses and their emerging role in immunology of reproduction. Int J Mol Sci. 2019;20(7):1649.

  39. •• van de Veerdonk FL, Stoeckman AK, Wu G, Boeckermann AN, Azam T, Netea MG, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci U S A. 2012;109(8):3001–5 Explanation of the binding receptor of IL-38, a IL-36 receptor antagonist.

  40. Mattii M, Ayala F, Balato N, Filotico R, Lembo S, Schiattarella M, et al. The balance between pro- and anti-inflammatory cytokines is crucial in human allergic contact dermatitis pathogenesis: the role of IL-1 family members. Exp Dermatol. 2013;22(12):813–9.

    Article  CAS  PubMed  Google Scholar 

  41. Quaranta M, Knapp B, Garzorz N, Mattii M, Pullabhatla V, Pennino D, et al. Intraindividual genome expression analysis reveals a specific molecular signature of psoriasis and eczema. Sci Transl Med. 2014;6(244):244ra90.

    Article  PubMed  CAS  Google Scholar 

  42. Suarez-Farinas M, Ungar B, Correa da Rosa J, Ewald DA, Rozenblit M, Gonzalez J, et al. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. J Allergy Clin Immunol. 2015;135(5):1218–27.

    Article  CAS  PubMed  Google Scholar 

  43. Qin X, Liu M, Zhang S, Wang C, Zhang T. The role of IL-36gamma and its regulation in eosinophilic inflammation in allergic rhinitis. Cytokine. 2019;117:84–90.

    Article  CAS  PubMed  Google Scholar 

  44. Qin X, Zhang T, Wang C, Li H, Liu M, Sun Y. IL-36alpha contributes to enhanced T helper 17 type responses in allergic rhinitis. Cytokine. 2020;128:154992.

    Article  CAS  PubMed  Google Scholar 

  45. Liu XG, Li J, Zheng LJ, Han B, Huang F. Interleukin-36 receptor antagonist alleviates airway inflammation in asthma via inhibiting the activation of Interleukin-36 pathway. Int Immunopharmacol. 2020;81:106200.

    Article  CAS  PubMed  Google Scholar 

  46. Chu M, Chu IM, Yung EC, Lam CW, Leung TF, Wong GW, et al. Aberrant expression of novel cytokine IL-38 and regulatory T lymphocytes in childhood asthma. Molecules. 2016;21(7):933.

  47. Olaru F, Jensen LE. Staphylococcus aureus stimulates neutrophil targeting chemokine expression in keratinocytes through an autocrine IL-1alpha signaling loop. J Invest Dermatol. 2010;130(7):1866–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cho JS, Guo Y, Ramos RI, Hebroni F, Plaisier SB, Xuan C, et al. Neutrophil-derived IL-1beta is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog. 2012;8(11):e1003047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Terada M, Tsutsui H, Imai Y, Yasuda K, Mizutani H, Yamanishi K, et al. Contribution of IL-18 to atopic-dermatitis-like skin inflammation induced by Staphylococcus aureus product in mice. Proc Natl Acad Sci U S A. 2006;103(23):8816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, et al. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science. 2015;347(6217):67–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol. 2018;26(6):484–97.

    Article  CAS  PubMed  Google Scholar 

  52. Liu H, Archer NK, Dillen CA, Wang Y, Ashbaugh AG, Ortines RV, et al. Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses. Cell Host Microbe. 2017;22(5):653–66 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nakagawa S, Matsumoto M, Katayama Y, Oguma R, Wakabayashi S, Nygaard T, et al. Staphylococcus aureus virulent PSMalpha peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe. 2017;22(5):667–77 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Takaishi M, Satoh T, Akira S, Sano S. Regnase-1, an immunomodulator, limits the IL-36/IL-36R autostimulatory loop in keratinocytes to suppress skin inflammation. J Invest Dermatol. 2018;138(6):1439–42.

    Article  CAS  PubMed  Google Scholar 

  55. Tsoi LC, Rodriguez E, Stolzl D, Wehkamp U, Sun J, Gerdes S, et al. Progression of acute-to-chronic atopic dermatitis is associated with quantitative rather than qualitative changes in cytokine responses. J Allergy Clin Immunol. 2020;145(5):1406-15.

  56. Wang H, Li ZY, Jiang WX, Liao B, Zhai GT, Wang N, et al. The activation and function of IL-36gamma in neutrophilic inflammation in chronic rhinosinusitis. J Allergy Clin Immunol. 2018;141(5):1646–58.

    Article  CAS  PubMed  Google Scholar 

  57. Chustz RT, Nagarkar DR, Poposki JA, Favoreto S Jr, Avila PC, Schleimer RP, et al. Regulation and function of the IL-1 family cytokine IL-1F9 in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2011;45(1):145–53.

    Article  CAS  PubMed  Google Scholar 

  58. Bochkov YA, Hanson KM, Keles S, Brockman-Schneider RA, Jarjour NN, Gern JE. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol. 2010;3(1):69–80.

    Article  CAS  PubMed  Google Scholar 

  59. Egan M, Bunyavanich S. Allergic rhinitis: the "ghost diagnosis" in patients with asthma. Asthma Res Pract. 2015;1:8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lin H, Ho AS, Haley-Vicente D, Zhang J, Bernal-Fussell J, Pace AM, et al. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member. J Biol Chem. 2001;276(23):20597–602.

    Article  CAS  PubMed  Google Scholar 

  61. Bensen JT, Dawson PA, Mychaleckyj JC, Bowden DW. Identification of a novel human cytokine gene in the interleukin gene cluster on chromosome 2q12-14. J Interf Cytokine Res. 2001;21(11):899–904.

    Article  CAS  Google Scholar 

  62. Nicklin MJ, Barton JL, Nguyen M, FitzGerald MG, Duff GW, Kornman K. A sequence-based map of the nine genes of the human interleukin-1 cluster. Genomics. 2002;79(5):718–25.

    Article  CAS  PubMed  Google Scholar 

  63. Rahman P, Sun S, Peddle L, Snelgrove T, Melay W, Greenwood C, et al. Association between the interleukin-1 family gene cluster and psoriatic arthritis. Arthritis Rheum. 2006;54(7):2321–5.

    Article  CAS  PubMed  Google Scholar 

  64. Chou CT, Timms AE, Wei JC, Tsai WC, Wordsworth BP, Brown MA. Replication of association of IL1 gene complex members with ankylosing spondylitis in Taiwanese Chinese. Ann Rheum Dis. 2006;65(8):1106–9.

    Article  CAS  PubMed  Google Scholar 

  65. Jung MY, Kang SW, Kim SK, Kim HJ, Yun DH, Yim SV, et al. The interleukin-1 family gene polymorphisms in Korean patients with rheumatoid arthritis. Scand J Rheumatol. 2010;39(3):190–6.

    Article  CAS  PubMed  Google Scholar 

  66. Monnet D, Kadi A, Izac B, Lebrun N, Letourneur F, Zinovieva E, et al. Association between the IL-1 family gene cluster and spondyloarthritis. Ann Rheum Dis. 2012;71(6):885–90.

    Article  CAS  PubMed  Google Scholar 

  67. Palomo J, Troccaz S, Talabot-Ayer D, Rodriguez E, Palmer G. The severity of imiquimod-induced mouse skin inflammation is independent of endogenous IL-38 expression. PLoS One. 2018;13(3):e0194667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Talabot-Ayer D, Mermoud L, Borowczyk J, Drukala J, Wolnicki M, Modarressi A, et al. Interleukin-38 interacts with destrin/actin-depolymerizing factor in human keratinocytes. PLoS One. 2019;14(11):e0225782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lauritano D, Ronconi G, Caraffa A, Enrica Gallenga C, Kritas SK, Di Emidio P, et al. New aspect of allergic contact dermatitis, an inflammatory skin disorder mediated by mast cells: can IL-38 help? Med Hypotheses. 2020;139:109687.

    Article  CAS  PubMed  Google Scholar 

  70. Mora J, Schlemmer A, Wittig I, Richter F, Putyrski M, Frank AC, et al. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses. J Mol Cell Biol. 2016;8(5):426–38.

    Article  CAS  PubMed  Google Scholar 

  71. • Sun X, Hou T, Cheung E, Iu TN, Tam VW, Chu IM, et al. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma. Cell Mol Immunol. 2020;17(6):631–46. The first paper for the signaling pathways involved in the anti-inflammatory activities of IL-38 in allergic asthma.

  72. Matsuoka M, Kawayama T, Tominaga M, Kaieda S, Tokunaga Y, Kaku Y, et al. Attenuated airway eosinophilic inflammations in IL-38 knockout mouse model. Kurume Med J. 2019;65(2):37–46.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Kwok Wong.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Basic and Applied Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsang, M.SM., Sun, X. & Wong, C.K. The Role of New IL-1 Family Members (IL-36 and IL-38) in Atopic Dermatitis, Allergic Asthma, and Allergic Rhinitis. Curr Allergy Asthma Rep 20, 40 (2020). https://doi.org/10.1007/s11882-020-00937-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-020-00937-1

Keywords

Navigation