Skip to main content

Advertisement

Log in

B cell Biology: An Overview

  • BASIC AND APPLIED SCIENCE (M FRIERI AND PJ BRYCE, SECTION EDITORS)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

In this review we summarize recent insights into the development of human B cells primarily by studying immunodeficiencies. Development and differentiation of B cells can be considered as a paradigm for many other developmental processes in cell biology. However, it differs from the development of many other cell types by phases of extremely rapid cell division and by defined series of somatic recombination and mutation events required to assemble and refine the B cell antigen receptors. Both somatic DNA alteration and proliferation phases take place in defined sites but in different organs. Thus, cell migration and timely arrival at defined sites are additional features of B cell development. By comparing experimental mouse models with insights gained from studying defined genetic defects leading to primary immunodeficiencies and hypogammaglobulinemia, we address important features that are characteristic for human B cells. We also summarize recent advances made by developing improved in vitro and in vivo systems allowing the development of human B cells from hematopoietic stem cells. Combined with genetic and functional studies of immunodeficiencies, these models will contribute not only to a better understanding of disease affecting the B lymphocyte compartment, but also to designing better and safer novel B cell-targeted therapies in autoimmunity and allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as : • Of importance •• Of major importance

  1. Ghia P, ten Boekel E, Rolink AG, Melchers F. B-cell development: a comparison between mouse and man. Immunol Today. 1998;19:480–5.

    CAS  PubMed  Google Scholar 

  2. Ferreiros-Vidal I et al. Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation. Blood. 2013;121:1769–82.

    CAS  PubMed  Google Scholar 

  3. Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol. 2002;2:162–74.

    CAS  PubMed  Google Scholar 

  4. Yoshida T, Ng SY, Zuniga-Pflucker JC, Georgopoulos K. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol. 2006;7:382–91.

    CAS  PubMed  Google Scholar 

  5. Thompson EC et al. Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity. 2007;26:335–44.

    CAS  PubMed  Google Scholar 

  6. Ma S et al. Ikaros and Aiolos inhibit pre-B-cell proliferation by directly suppressing c-Myc expression. Mol Cell Biol. 2010;30:4149–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Sun L et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1999;96:680–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Holmfeldt L et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242–52. This extensive genomic profiling approach to ALL reports chromosomal alterations linked to Ras, Ikaros and TP53.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Molnar A, Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol. 1994;14:8292–303.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Papathanasiou P et al. Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity. 2003;19:131–44.

    CAS  PubMed  Google Scholar 

  11. Schjerven H et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol. 2013;14:1073–83. The authors demonstrate distinct roles of individual Ikaros Zn-fingers in gene regulation.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Kim J et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity. 1999;10:345–55.

    CAS  PubMed  Google Scholar 

  13. Zhang J et al. Harnessing of the nucleosome-remodeling-deacetylase complex controls lymphocyte development and prevents leukemogenesis. Nat Immunol. 2012;13:86–94. The paper describes how Ikaros regulates nucleosome remodeling and histone modification.

    CAS  Google Scholar 

  14. Turner Jr CA, Mack DH, Davis MM. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell. 1994;77:297–306.

    CAS  PubMed  Google Scholar 

  15. Ye BH et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet. 1997;16:161–70.

    CAS  PubMed  Google Scholar 

  16. Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004;432:635–9.

    CAS  PubMed  Google Scholar 

  17. Kosan C et al. Transcription factor miz-1 is required to regulate interleukin-7 receptor signaling at early commitment stages of B cell differentiation. Immunity. 2010;33:917–28.

    CAS  PubMed  Google Scholar 

  18. Moroy T, Khandanpour C. Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. Semin Immunol. 2011;23:368–78.

    PubMed  Google Scholar 

  19. de Almeida Ribeiro C et al. The DNA-binding protein CTCF limits proximal Vkappa recombination and restricts kappa enhancer interactions to the immunoglobulin kappa light chain locus. Immunity. 2011;35:501–13.

    Google Scholar 

  20. Nutt SL, Kee BL. The transcriptional regulation of B cell lineage commitment. Immunity. 2007;26:715–25.

    CAS  PubMed  Google Scholar 

  21. Singh H, Medina KL, Pongubala JM. Contingent gene regulatory networks and B cell fate specification. Proc Natl Acad Sci U S A. 2005;102:4949–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Nechanitzky R et al. Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells. Nat Immunol. 2013;14:867–75. The paper shows that EBF1 and Pax5 induce lineage commitment by repressing alternative cell fates.

    CAS  PubMed  Google Scholar 

  23. Borghesi L et al. E47 is required for V(D)J recombinase activity in common lymphoid progenitors. J Exp Med. 2005;202:1669–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Lin H, Grosschedl R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature. 1995;376:263–7.

    CAS  PubMed  Google Scholar 

  25. Vallespinos M et al. B Lymphocyte commitment program is driven by the proto-oncogene c-Myc. J Immunol. 2011;186:6726–36.

    CAS  PubMed  Google Scholar 

  26. Seo W, Ikawa T, Kawamoto H, Taniuchi I. Runx1-Cbfbeta facilitates early B lymphocyte development by regulating expression of Ebf1. J Exp Med. 2012;209:1255–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Lin YC et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol. 2010;11:635–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Zandi S et al. EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors. J Immunol. 2008;181:3364–72.

    CAS  PubMed  Google Scholar 

  29. Welinder E, Ahsberg J, Sigvardsson M. B-lymphocyte commitment: identifying the point of no return. Semin Immunol. 2011;23:335–40.

    CAS  PubMed  Google Scholar 

  30. Dengler HS et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol. 2008;9:1388–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401:556–62.

    CAS  PubMed  Google Scholar 

  32. Nutt SL, Eberhard D, Horcher M, Rolink AG, Busslinger M. Pax5 determines the identity of B cells from the beginning to the end of B-lymphopoiesis. Int Rev Immunol. 2001;20:65–82.

    CAS  PubMed  Google Scholar 

  33. Delogu A et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity. 2006;24:269–81.

    CAS  PubMed  Google Scholar 

  34. Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5: the guardian of B cell identity and function. Nat Immunol. 2007;8:463–70.

    CAS  PubMed  Google Scholar 

  35. Souabni A, Cobaleda C, Schebesta M, Busslinger M. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity. 2002;17:781–93.

    CAS  PubMed  Google Scholar 

  36. Sanz E, Alvarez-Mon M, Martinez AC, de la Hera A. Human cord blood CD34+Pax-5+ B-cell progenitors: single-cell analyses of their gene expression profiles. Blood. 2003;101:3424–30.

    CAS  PubMed  Google Scholar 

  37. Reynaud D, Lefort N, Manie E, Coulombel L, Levy Y. In vitro identification of human pro-B cells that give rise to macrophages, natural killer cells, and T cells. Blood. 2003;101:4313–21.

    CAS  PubMed  Google Scholar 

  38. van Zelm MC et al. Ig gene rearrangement steps are initiated in early human precursor B cell subsets and correlate with specific transcription factor expression. J Immunol. 2005;175:5912–22.

    PubMed  Google Scholar 

  39. Puck JM et al. The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum Mol Genet. 1993;2:1099–104.

    CAS  PubMed  Google Scholar 

  40. Prieyl JA, LeBien TW. Interleukin 7 independent development of human B cells. Proc Natl Acad Sci U S A. 1996;93:10348–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;20:394–7.

    CAS  PubMed  Google Scholar 

  42. Campana D, Farrant J, Inamdar N, Webster AD, Janossy G. Phenotypic features and proliferative activity of B cell progenitors in X-linked agammaglobulinemia. J Immunol. 1990;145:1675–80.

    CAS  PubMed  Google Scholar 

  43. Tsukada S et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72:279–90.

    CAS  PubMed  Google Scholar 

  44. Minegishi Y et al. An essential role for BLNK in human B cell development. Science. 1999;286:1954–7.

    CAS  PubMed  Google Scholar 

  45. Mansur A, Therattil J, Young RM, Frieri M. An atypical case of hypogammaglobulinemia. Ann Allergy Asthma Immunol. 2000;84:583–6.

    CAS  PubMed  Google Scholar 

  46. Goldman JP et al. Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol. 1998;103:335–42.

    CAS  PubMed  Google Scholar 

  47. van der Loo JC et al. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells. Blood. 1998;92:2556–70.

    PubMed  Google Scholar 

  48. Peled A et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283:845–8.

    CAS  PubMed  Google Scholar 

  49. Ueda T et al. Hematopoietic repopulating ability of cord blood CD34(+) cells in NOD/Shi-scid mice. Stem Cells. 2000;18:204–13.

    CAS  PubMed  Google Scholar 

  50. Hogan CJ, Shpall EJ, Keller G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci U S A. 2002;99:413–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Ito M et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100:3175–82.

    CAS  PubMed  Google Scholar 

  52. Traggiai E et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304:104–7.

    CAS  PubMed  Google Scholar 

  53. Bente DA, Melkus MW, Garcia JV, Rico-Hesse R. Dengue fever in humanized NOD/SCID mice. J Virol. 2005;79:13797–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Gorantla S et al. Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2-/-gammac-/- mice. J Virol. 2007;81:2700–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Yu CI et al. Broad influenza-specific CD8+ T-cell responses in humanized mice vaccinated with influenza virus vaccines. Blood. 2008;112:3671–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Banerjee P et al. Adult T-cell leukemia/lymphoma development in HTLV-1-infected humanized SCID mice. Blood. 2010;115:2640–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Rathinam C et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood. 2011;118:3119–28.

    CAS  PubMed  Google Scholar 

  58. Hu Z, Yang YG. Full reconstitution of human platelets in humanized mice after macrophage depletion. Blood. 2012;120:1713–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Tanaka S et al. Development of mature and functional human myeloid subsets in hematopoietic stem cell-engrafted NOD/SCID/IL2rgammaKO mice. J Immunol. 2012;188:6145–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Kraus H et al. A feeder free differentiation system identifies autonomously proliferating B cell precursors in human bone marrow. J Immunol. 2014;192(3):1044–54. This paper reports a feeder cell-free differentiation system for human B cells and autonomous proliferation of human pro-B and pre-B cells. The paper reports autonomous development and proliferation of human B cell precursors.

    CAS  PubMed  Google Scholar 

  61. Rawlings DJ, Quan SG, Kato RM, Witte ON. Long-term culture system for selective growth of human B-cell progenitors. Proc Natl Acad Sci U S A. 1995;92:1570–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Fluckiger AC et al. In vitro reconstitution of human B-cell ontogeny: from CD34(+) multipotent progenitors to Ig-secreting cells. Blood. 1998;92:4509–20.

    CAS  PubMed  Google Scholar 

  63. Kurosaka D, LeBien TW, Pribyl JA. Comparative studies of different stromal cell microenvironments in support of human B-cell development. Exp Hematol. 1999;27:1271–81.

    CAS  PubMed  Google Scholar 

  64. La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC. Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood. 2005;105:1431–9.

    PubMed  Google Scholar 

  65. Taguchi T et al. Interleukin-7 contributes to human pro-B-cell development in a mouse stromal cell-dependent culture system. Exp Hematol. 2007;35:1398–407.

    CAS  PubMed  Google Scholar 

  66. Ichii M et al. Regulation of human B lymphopoiesis by the transforming growth factor-beta superfamily in a newly established coculture system using human mesenchymal stem cells as a supportive microenvironment. Exp Hematol. 2008;36:587–97.

    CAS  PubMed  Google Scholar 

  67. Awong G et al. Human proT-cells generated in vitro facilitate hematopoietic stem cell-derived T-lymphopoiesis in vivo and restore thymic architecture. Blood. 2013;122:4210–9.

    CAS  PubMed  Google Scholar 

  68. Wardemann H et al. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374–7.

    CAS  PubMed  Google Scholar 

  69. Melamed D, Nemazee D. Self-antigen does not accelerate immature B cell apoptosis, but stimulates receptor editing as a consequence of developmental arrest. Proc Natl Acad Sci U S A. 1997;94:9267–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Pelanda R et al. Receptor editing in a transgenic mouse model: site, efficiency, and role in B cell tolerance and antibody diversification. Immunity. 1997;7:765–75.

    CAS  PubMed  Google Scholar 

  71. Nemazee DA, Burki K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature. 1989;337:562–6. A seminal in vivo model to study clonal deletion of autoreactive B cells.

    CAS  PubMed  Google Scholar 

  72. Brombacher F, Kohler G, Eibel H. B cell tolerance in mice transgenic for anti-CD8 immunoglobulin mu chain. J Exp Med. 1991;174:1335–46.

    CAS  PubMed  Google Scholar 

  73. Erikson J et al. Expression of anti-DNA immunoglobulin transgenes in non-autoimmune mice. Nature. 1991;349:331–4.

    CAS  PubMed  Google Scholar 

  74. Hartley SB et al. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature. 1991;353:765–9.

    CAS  PubMed  Google Scholar 

  75. Zikherman J, Parameswaran R, Weiss A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature. 2012;489:160–4. A very elegant expermental model demonstrating that all peripheral B cells bind autoantigens although with different avidities.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Nemazee D, Hogquist KA. Antigen receptor selection by editing or downregulation of V(D)J recombination. Curr Opin Immunol. 2003;15:182–9.

    CAS  PubMed  Google Scholar 

  77. Hartley SB et al. Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell. 1993;72:325–35.

    CAS  PubMed  Google Scholar 

  78. Fields ML, Erikson J. The regulation of lupus-associated autoantibodies: immunoglobulin transgenic models. Curr Opin Immunol. 2003;15:709–17.

    CAS  PubMed  Google Scholar 

  79. Mackay F, Schneider P, Rennert P, Browning J. BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–64.

    CAS  PubMed  Google Scholar 

  80. Frieri M. Mechanisms of disease for the clinician: systemic lupus erythematosus. Ann Allergy Asthma Immunol. 2013;110:228–32.

    PubMed  Google Scholar 

  81. Claudio E, Brown K, Park S, Wang H, Siebenlist U. BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol. 2002;3:958–65.

    CAS  PubMed  Google Scholar 

  82. Zubair A, Frieri M. NF-kappaB and systemic lupus erythematosus: examining the link. J Nephrol. 2013;26:953–9.

    PubMed  Google Scholar 

  83. Patke A, Mecklenbrauker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J Exp Med. 2006;203:2551–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Thompson JS et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science. 2001;293:2108–11.

    CAS  PubMed  Google Scholar 

  85. Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol. 2004;173:2245–52.

    CAS  PubMed  Google Scholar 

  86. Warnatz K et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci U S A. 2009;106:13945–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Pieper K, et al. A common SNP impairs B cell activating factor receptor’s multimerization, contributing to common variable immunodeficiency. J Allergy Clin Immunol. 2014. doi:10.1016/j.jaci.2013.11.021.

  88. Greil J et al. Whole-exome sequencing links caspase recruitment domain 11 (CARD11) inactivation to severe combined immunodeficiency. J Allergy Clin Immunol. 2013;131:1376–83. e1373.

    CAS  PubMed  Google Scholar 

  89. Stepensky P et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol. 2013;131:477–85. The paper underlines the strict dependece of human B cell development on NF-kappaB signaling.

    CAS  PubMed  Google Scholar 

  90. Schweighoffer E et al. The BAFF Receptor Transduces Survival Signals by Co-opting the B Cell Receptor Signaling Pathway. Immunity. 2013. The authors show that BAFFR-induced signals crossfeed into the BCR pathway and may represent “tonic” BCR signaling.

  91. Yu X et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. 2008;455:532–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Shlomchik MJ, Weisel F. Germinal center selection and the development of memory B and plasma cells. Immunol Rev. 2012;247:52–63.

    PubMed  Google Scholar 

  93. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2012;30:429–57.

    CAS  PubMed  Google Scholar 

  94. Lam KP, Kuhn R, Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell. 1997;90:1073–83.

    CAS  PubMed  Google Scholar 

  95. Liu YJ et al. Mechanism of antigen-driven selection in germinal centres. Nature. 1989;342:929–31.

    CAS  PubMed  Google Scholar 

  96. Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan IC. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J Immunol. 1991;21:2951–62.

    CAS  PubMed  Google Scholar 

  97. Allen CD, Okada T, Tang HL, Cyster JG. Imaging of germinal center selection events during affinity maturation. Science. 2007;315:528–31.

    CAS  PubMed  Google Scholar 

  98. Muramatsu M et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–63.

    CAS  PubMed  Google Scholar 

  99. Revy P et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102:565–75.

    CAS  PubMed  Google Scholar 

  100. Phan TG, Green JA, Gray EE, Xu Y, Cyster JG. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat Immunol. 2009;10:786–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Okada T et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 2005;3:e150.

    PubMed Central  PubMed  Google Scholar 

  102. Pereira JP, Kelly LM, Xu Y, Cyster JG. EBI2 mediates B cell segregation between the outer and centre follicle. Nature. 2009;460:1122–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Hannedouche S et al. Oxysterols direct immune cell migration via EBI2. Nature. 2011;475:524–7.

    CAS  PubMed  Google Scholar 

  104. Yi T et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity. 2012;37:535–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Kelly LM, Pereira JP, Yi T, Xu Y, Cyster JG. EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J Immunol. 2011;187:3026–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Bannard O et al. Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity. 2013;39:912–24. The paper shows how shuttling between dark and light zone regulates GC B cell proliferation, affinity maturation and memory vs. plasma cell development.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Wang X et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med. 2011;208:2497–510.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Spiegel S, Milstien S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol. 2011;11:403–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Hanel P, Andreani P, Graler MH. Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J Off Publ Fed Am Soc Exp Biol. 2007;21:1202–9.

    Google Scholar 

  110. Yatomi Y et al. Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood. 2000;96:3431–8.

    CAS  PubMed  Google Scholar 

  111. Hla T, Venkataraman K, Michaud J. The vascular S1P gradient-cellular sources and biological significance. Biochim Biophys Acta. 2008;1781:477–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Venkataraman K et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res. 2008;102:669–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Pappu R et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007;316:295–8.

    CAS  PubMed  Google Scholar 

  114. Schwab SR et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science. 2005;309:1735–9.

    CAS  PubMed  Google Scholar 

  115. Matloubian M et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427:355–60.

    CAS  PubMed  Google Scholar 

  116. Sic H., et al. S1P-receptors control B cell migration through signaling components associated with primary immunodeficiencies, chronic lymphocytic leukemia and multiple sclerosis. J Allergy Clin Immunol. 2014 in press. The first comprehenisve analysis of S1P-receptor expression and signaling in human B cells.

  117. Green JA, Cyster JG. S1PR2 links germinal center confinement and growth regulation. Immunol Rev. 2012;247:36–51.

    PubMed Central  PubMed  Google Scholar 

  118. MacLennan IC. Germinal centers. Annu Rev Immunol. 1994;12:117–39.

    CAS  PubMed  Google Scholar 

  119. Casamayor-Palleja M, Feuillard J, Ball J, Drew M, MacLennan IC. Centrocytes rapidly adopt a memory B cell phenotype on co-culture with autologous germinal centre T cell-enriched preparations. Int Immunol. 1996;8:737–44.

    CAS  PubMed  Google Scholar 

  120. Batista FD, Iber D, Neuberger MS. B cells acquire antigen from target cells after synapse formation. Nature. 2001;411:489–94.

    CAS  PubMed  Google Scholar 

  121. Schwickert TA et al. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J Exp Med. 2011;208:1243–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Depoil D et al. Immunological synapses are versatile structures enabling selective T cell polarization. Immunity. 2005;22:185–94.

    CAS  PubMed  Google Scholar 

  123. Takahashi Y, Ohta H, Takemori T. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity. 2001;14:181–92.

    CAS  PubMed  Google Scholar 

  124. Verbeke CS, Wenthe U, Zentgraf H. Fas ligand expression in the germinal centre. J Pathol. 1999;189:155–60.

    CAS  PubMed  Google Scholar 

  125. Phan TG et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. J Exp Med. 2006;203:2419–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Thiel J et al. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol. 2012;129:801–10. e806.

    CAS  PubMed  Google Scholar 

  127. van Zelm MC et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354:1901–12.

    PubMed  Google Scholar 

  128. van Zelm MC et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120:1265–74.

    PubMed Central  PubMed  Google Scholar 

  129. Tangye SG, Avery DT, Deenick EK, Hodgkin PD. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J Immunol. 2003;170:686–94.

    CAS  PubMed  Google Scholar 

  130. Wang LC et al. The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev. 1998;12:2392–402.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Hymowitz SG et al. Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding. J Biol Chem. 2005;280:7218–27.

    CAS  PubMed  Google Scholar 

  132. Yuan ZL, Guan YJ, Chatterjee D, Chin YE. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science. 2005;307:269–73.

    CAS  PubMed  Google Scholar 

  133. Kienzler AK, Rizzi M, Reith M, Nutt SL, Eibel H. Inhibition of human B-cell development into plasmablasts by histone deacetylase inhibitor valproic acid. J Allergy Clin Immunol. 2013;131:1695–9.

    CAS  PubMed  Google Scholar 

  134. Yamaguchi T et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev. 2010;24:455–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Matthias P, Rolink AG. Transcriptional networks in developing and mature B cells. Nat Rev Immunol. 2005;5:497–508.

    CAS  PubMed  Google Scholar 

  136. O’Riordan M, Grosschedl R. Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity. 1999;11:21–31.

    PubMed  Google Scholar 

  137. Horcher M, Souabni A, Busslinger M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity. 2001;14:779–90.

    CAS  PubMed  Google Scholar 

  138. Lin Y, Wong K, Calame K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science. 1997;276:596–9.

    CAS  PubMed  Google Scholar 

  139. Angelin-Duclos C, Cattoretti G, Lin KI, Calame K. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J Immunol. 2000;165:5462–71.

    CAS  PubMed  Google Scholar 

  140. Lin KI, Angelin-Duclos C, Kuo TC, Calame K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol Cell Biol. 2002;22:4771–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Shaffer AL et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity. 2002;17:51–62.

    CAS  PubMed  Google Scholar 

  142. Shapiro-Shelef M et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity. 2003;19:607–20.

    CAS  PubMed  Google Scholar 

  143. Kallies A et al. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J Exp Med. 2004;200:967–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Shaffer AL et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21:81–93.

    CAS  PubMed  Google Scholar 

  145. Klein U et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006;7:773–82.

    CAS  PubMed  Google Scholar 

  146. Kallies A et al. Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity. 2007;26:555–66.

    CAS  PubMed  Google Scholar 

  147. Cattoretti G et al. BCL-6 protein is expressed in germinal-center B cells. Blood. 1995;86:45–53.

    CAS  PubMed  Google Scholar 

  148. Allman D et al. BCL-6 expression during B-cell activation. Blood. 1996;87:5257–68.

    CAS  PubMed  Google Scholar 

  149. Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science. 1997;276:589–92.

    CAS  PubMed  Google Scholar 

  150. Basso K et al. Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood. 2010;115:975–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Tunyaplin C et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J Immunol. 2004;173:1158–65.

    CAS  PubMed  Google Scholar 

  152. Shaffer AL et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity. 2000;13:199–212.

    CAS  PubMed  Google Scholar 

  153. Abecasis GR et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65. The report of the 1,000 genome project.

    PubMed  Google Scholar 

  154. Saito M et al. BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A. 2009;106:11294–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Shapiro-Shelef M, Lin KI, Savitsky D, Liao J, Calame K. Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J Exp Med. 2005;202:1471–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Reimold AM et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J Exp Med. 1996;183:393–401.

    CAS  PubMed  Google Scholar 

  157. Iwakoshi NN et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol. 2003;4:321–9.

    CAS  PubMed  Google Scholar 

  158. Todd DJ et al. XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development. J Exp Med. 2009;206:2151–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Mittrucker HW et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science. 1997;275:540–3.

    CAS  PubMed  Google Scholar 

  160. Sciammas R et al. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity. 2006;25:225–36.

    CAS  PubMed  Google Scholar 

  161. Berberich I, Shu GL, Clark EA. Cross-linking CD40 on B cells rapidly activates nuclear factor-kappa B. J Immunol. 1994;153:4357–66.

    CAS  PubMed  Google Scholar 

  162. Han S et al. Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J Immunol. 1995;155:556–67.

    CAS  PubMed  Google Scholar 

  163. Basso K et al. Tracking CD40 signaling during germinal center development. Blood. 2004;104:4088–96.

    CAS  PubMed  Google Scholar 

  164. Saito M et al. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer cell. 2007;12:280–92.

    CAS  PubMed  Google Scholar 

  165. Ferrari S et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98:12614–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Jain A et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001;2:223–8.

    CAS  PubMed  Google Scholar 

  167. Good KL, Bryant VL, Tangye SG. Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J Immunol. 2006;177:5236–47.

    CAS  PubMed  Google Scholar 

  168. Ding BB, Bi E, Chen H, Yu JJ, Ye BH. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J Immunol. 2013;190:1827–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Ozaki K et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol. 2004;173:5361–71.

    CAS  PubMed  Google Scholar 

  170. Pene J et al. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol. 2004;172:5154–7.

    CAS  PubMed  Google Scholar 

  171. Kotlarz D et al. Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J Exp Med. 2013;210:433–43. The paper shows the role of IL-21R signaling in immune responses of B, T and NK cells.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Scheeren FA et al. STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nat Immunol. 2005;6:303–13.

    CAS  PubMed  Google Scholar 

  173. Diehl SA et al. STAT3-mediated up-regulation of BLIMP1 Is coordinated with BCL6 down-regulation to control human plasma cell differentiation. J Immunol. 2008;180:4805–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Avery DT et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med. 2010;207:155–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Holland SM et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med. 2007;357:1608–19.

    CAS  PubMed  Google Scholar 

  176. Minegishi Y et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–62.

    CAS  PubMed  Google Scholar 

  177. Hsu AP et al. Intermediate phenotypes in patients with autosomal dominant hyper-IgE syndrome caused by somatic mosaicism. J Allergy Clin Immunol. 2013;131:1586–93.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

This work was supported by the German Federal Ministry of Education and Research (BMBF 01 EO 0803) to Marta Rizzi, the German Cancer research fund through grant 109138 and the DFG through the TRR130 to Hermann Eibel and Helene Kraus; Anne-Kathrin Kienzler was supported by the NIHR Oxford Biomedical Research Centre.

Heiko Sic declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Eibel.

Additional information

This article is part of the Topical Collection on Basic and Applied Science

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eibel, H., Kraus, H., Sic, H. et al. B cell Biology: An Overview. Curr Allergy Asthma Rep 14, 434 (2014). https://doi.org/10.1007/s11882-014-0434-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-014-0434-8

Keywords

Navigation