Skip to main content
Log in

Peripheral airways in asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

The peripheral, or small, airways are usually defined as conducting airways that are less than 2 mm in internal diameter and extend from the noncartilaginous bronchioles to the alveolar ducts. Noninvasively measuring the function of the small airways in isolation is difficult since they make up only about 10% of total airway resistance. Quantitative pathologic studies have shown that both the small and large airways are involved in inflammation and remodeling in asthma. Recent studies also have shown that inflammation involves the alveoli surrounding small airways in asthma and that the distribution of different inflammatory cells across the airway wall varies in both large and small airways. Inhaled treatment that targets the small airways may be more effective than treatment that is deposited more proximally and suggests that treatments in the future need to address the variable distribution of pathology in the bronchial tree in asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Huber HL, Koessler KK: The pathology of bronchial asthma. Arch Intern Med 1922, 30:689.

    Google Scholar 

  2. Kraft M: The distal airways: are they important in asthma? Eur Respir J 1999, 14:1403–1417. An excellent, detailed review of the physiologic, structural, and inflammatory changes in the small airways in asthma.

    Article  PubMed  CAS  Google Scholar 

  3. Jeffrey P: The development of large and small airways. Am J Respir Crit Care Med 1998, 157:S174-S180.

    PubMed  CAS  Google Scholar 

  4. James AL, Pare PD, Hogg JC: The mechanics of airway narrowing in asthma. Am Rev Respir Dis 1989, 139:242–246.

    PubMed  CAS  Google Scholar 

  5. Poulter W: Basic concepts in lung immunology. Res Immunol 1997, 148:8–13.

    Article  PubMed  CAS  Google Scholar 

  6. Macklem P, Mead J: Resistance of central and peripheral airways measured by a retrograde catheter. J Appl Physiol 1967, 22:395–401.

    PubMed  CAS  Google Scholar 

  7. Weibel E, Gomez D: Architecture of the human lung. Science 1962, 137:577–585.

    Article  PubMed  CAS  Google Scholar 

  8. Hogg J, Macklem P, Thurlbeck W: Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med 1968, 278:1355–1360.

    Article  PubMed  CAS  Google Scholar 

  9. Laitinen LA, Laitinen A, Haahtela T: Airway mucosal inflammation even in patients with newly diagnosed asthma. Am Rev Respir Dis 1993, 147:697–704.

    PubMed  CAS  Google Scholar 

  10. Moreno RH, Hogg JC, Pare PD: Mechanics of airway narrowing. Am Rev Respir Dis 1986, 133:1171–1180.

    PubMed  CAS  Google Scholar 

  11. Haahtela T, Jarvinen M, Kava T, et al.: Comparison of a b2-agonist, terbutaline, with an inhaled corticosteroid, budesonide, in newly detected asthma. N Engl J Med 1991, 325:388–392.

    Article  PubMed  CAS  Google Scholar 

  12. Laitinen LA, Laitinen A, Haahtela T: A comparative study of the effects of an inhaled corticosteroid, budesonide, and a beta-2 agonist, terbutaline, on airway inflammation in newly diagnosed asthma: a randomized, double-blind, parallel-group controlled trial. J Allergy Clin Immunol 1992, 90:32–42.

    PubMed  CAS  Google Scholar 

  13. Sont JK, Willems LNA, Bel EH, et al.: Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guideline to long-term treatment. Am J Respir Crit Care Med 1999, 159:1043–1051. A study of treatment in asthma showing that, instead of using symptoms and peak flows to determine treatment requirements, adding the more stringent criterion of normal or improving airway responsiveness resulted in fewer exacerbations of asthma and reduced thickness of the basement membrane.

    PubMed  CAS  Google Scholar 

  14. Robertson CF, Heycock E, Bishop J, et al.: Prevalence of asthma in Melbourne school children: changes in 26 years. Br Med J 1991, 302:1116–1118.

    CAS  Google Scholar 

  15. Haahtela T, Jarvinen M, Kava T, et al.: Effects of reducing or discontinuing inhaled budesonide in patients with mild asthma. N Eng J Med 1994, 331:700–705.

    Article  CAS  Google Scholar 

  16. Ulrik C, Backer V, Dirksen A, et al.: Extrinsic and intrinsic asthma from childhood to adult age: a 10 year follow-up. Respir Med 1995, 89:547–554.

    Article  PubMed  CAS  Google Scholar 

  17. Yanai M, Sekizawa K, Ohrui T, et al.: Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J Appl Physiol 1992, 72:1016–1023.

    PubMed  CAS  Google Scholar 

  18. Ebina M, Yaegashi H, Chiba R, et al.: Hyperreactive site in the airway tree of asthmatic patients revealed by thickening of the bronchial muscles. A morphometric study. Am Rev Respir Dis 1990, 141:1327–1332.

    PubMed  CAS  Google Scholar 

  19. Robertson CF, Horak E, Roberts M, et al.: Melbourne epidemiological study of childhood asthma. Respirology 2001, 6(suppl):A10.

    Google Scholar 

  20. Brown PJ, Greville HW, Finucane KE: Asthma and irreversible airflow obstruction. Thorax 1984, 39:131–136.

    Article  PubMed  CAS  Google Scholar 

  21. Lange P, Parner J, Vestbo J, et al.: 15-year follow-up study of ventilatory function in adults with asthma. N Engl J Med 1998, 339:1194–1200. Longitudinal study of a large population cohort showing that the decline in FEV1 in asthmatics is greater than that for nonasthmatics, with an additive effect of cigarette smoking.

    Article  PubMed  CAS  Google Scholar 

  22. Peat JK, Woolcock AJ, Cullen K: Rate of decline of lung function in subjects with asthma. Eur J Respir Dis 1987, 70:171–179.

    PubMed  CAS  Google Scholar 

  23. Haley KJ, Sunday ME, Wiggs BR, et al.: Inflammatory cell distribution within and along asthmatic airways. Am J Respir Crit Care Med 1998, 158:565–572. This study showed that the distribution of inflammatory cells is uneven across the airway wall and that small airways show inflammation in asthma but not in cystic fibrosis.

    PubMed  CAS  Google Scholar 

  24. Carroll NG, Cooke C, James AL: The distribution of eosinophils and lymphocytes in the large and small airways of asthmatics. Eur Respir J 1997, 10:292–300.

    Article  PubMed  CAS  Google Scholar 

  25. Carroll NG, Carello S, Cooke C, James A: Airway structure and inflammatory cells in fatal attacks of asthma. Eur Resp J 1996, 9:709–715.

    Article  CAS  Google Scholar 

  26. Poulter LW, Norris A, Power C, et al.: T-cell dominated inflammatory reactions in the bronchi of asthmatics are not reflected in matched bronchoalveolar lavage specimens. Eur Respir J 1992, 5:182–189.

    PubMed  CAS  Google Scholar 

  27. Vanden Burgt J, Busse W, Martin R, et al.: Efficacy and safety overview of a new inhaled corticosteroid, QVAR (hydrofluoroalkane- beclamethasone extrafine inhalation aerosol), in asthma. J Allergy Clin Immunol 2000, 106:1209–1226. This article is an invited but peer-reviewed paper from 3M (St. Paul, MN), the manufacturers of small particle-size beclomethasone (QVAR), and is a summary of the clinical studies showing better efficacy in relation to total inhaled dose. This body of work has kindled interest in studies of the small airways in asthma.

    Article  Google Scholar 

  28. Lamson R, Butt E: Fatal /ldasthma." A clinical and pathologic consideration of 187 cases. JAMA 1937, 108:1843–1850.

    Google Scholar 

  29. Unger L: Pathology of bronchial asthma, with five autopsy reports. South Med J 1945, 38:513–523.

    Google Scholar 

  30. Faul JL, Tormey VJ, Leonard C, et al.: Lung immunopathology in cases of sudden asthma death. Eur Respir J 1997, 10:301–307.

    Article  PubMed  CAS  Google Scholar 

  31. Kraft M, Djukanovich R, Wilson S, et al.: Alveolar tissue inflammation in asthma. Am J Respir Crit Care Med 1996, 154:1505–1510.

    PubMed  CAS  Google Scholar 

  32. Kraft M, Djukanovich R, Wilson S, et al.: Lymphocyte and eosinophil influx into alveolar tissue in nocturnal asthma. Am J Respir Crit Care Dis 1999, 159:228–234. These studies required a lot of work on behalf of the researchers, and the subjects, to obtain transbronchial biopsies at 4 AM. They show that patients with nocturnal symptoms have increased numbers of inflammatory cells in the alveoli around the peripheral airways. It is unknown if this represents generalized alveolar inflammation.

    CAS  Google Scholar 

  33. Saetta M, Di Stefano AD, Rosina C, et al.: Quantitative structural analysis of peripheral airways and arteries in sudden fatal asthma. Am Rev Respir Dis 1991, 143:138–143.

    PubMed  CAS  Google Scholar 

  34. Sobonya RE: Quantitative structural alterations in long-standing allergic asthma. Am Rev Respir Dis 1984, 130:289–292.

    PubMed  CAS  Google Scholar 

  35. Carroll NG, Elliot J, Morton AR, James AL: The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis 1993, 147:405–410.

    PubMed  CAS  Google Scholar 

  36. James AL, Hogg JC, Dunn LA, Pare PD: The use of the internal perimeter to compare airway size and to calculate smooth muscle shortening. Am Rev Respir Dis 1988, 138:136–139.

    PubMed  CAS  Google Scholar 

  37. Carroll NG, Mutavzdic S, James AL, et al.: Distribution and degranulation of airway mast cells in normal and asthmatic subjects. Eur Respir J 2002, in press.

  38. Ammit AJ, Bekir SS, Johnson PRA, et al.: Mast cell numbers are increased in the smooth muscle of human sensitized isolated bronchi. Am J Respir Crit Care Med 1997, 155:1123–1129.

    PubMed  CAS  Google Scholar 

  39. Despas P, Leroux M, Macklem P: Site of airway obstruction in asthma as determined by measuring maximal expiratory flow breathing air and helium-oxygen mixture. J Clin Invest 1972, 51:3235–3243.

    Article  PubMed  CAS  Google Scholar 

  40. Macklem PT, Proctor DF, Hogg JC: The stability of peripheral airways. Respir Physiol 1970, 9:191–203.

    Article  Google Scholar 

  41. King G, Eberl S, Salome C, et al.: Differences in airway closure between normal and asthmatic subjects measured with single-photon emission computed tomography and Technegas. Am J Respir Crit Care Med 1998, 158:1900–1906. This paper describes methods of quantifying discrete volumes of lung being ventilated in normal and asthmatic subjects. It demonstrates airway closure, although the exact site of closing (small or large airways) is not identified. These methods provide potential for development and assessment of airway function, probably in conjunction with other conventional tests.

    PubMed  CAS  Google Scholar 

  42. Woolcock A, Vincent N, Macklem P: Frequency dependence of compliance as a test for obstruction in the small airways. J Clin Invest 1969, 48:1097–1106.

    PubMed  CAS  Google Scholar 

  43. Wagner EM, Liu MC, Wienmann GG, et al.: Peripheral lung resistance in normal and asthmatic subjects. Am Rev Respir Dis 1990, 141:584–588.

    PubMed  CAS  Google Scholar 

  44. Pliss L, Ingenito E, Ingram R: Responsiveness, inflammation, and effects of deep breaths on obstruction in mild asthma. J Appl Physiol 1989, 66:2298–2304.

    PubMed  CAS  Google Scholar 

  45. Wiggs BR, Bosken C, Pare PD, et al.: A model of airway narrowing in asthma and in chronic obstructive pulmonary disease. Am Rev Resp Dis 1992, 145:1251–1258.

    PubMed  CAS  Google Scholar 

  46. Antic R, Macklem P: The influence of clinical factors on site of airway obstruction in asthma. Am Rev Respir Dis 1976, 114:851–859.

    PubMed  CAS  Google Scholar 

  47. Sylvester J, Permutt S: Exhaled NO: first, hold your breath. J Appl Physiol 2001, 91:474–476. This editorial not only discusses a new technique of identifying the volume of air contributing to an exhaled nitric oxide sample, but also the general problem of identifying the site of origin on nitric oxide in an exhaled sample, which extends the potential usefulness of exhaled breath analysis for inflammatory products in general.

    PubMed  CAS  Google Scholar 

  48. Synek M, Beasley R, Frew AJ, et al.: Cellular infiltration of the airways in asthma of varying severity. Am J Respir Crit Care Med 1996, 154:224–230.

    PubMed  CAS  Google Scholar 

  49. Hamid Q, Song Y, Kotsimbos T, et al.: Inflammation of small airways in asthma. J Allergy Clin Immunol 1997, 100:44–51.

    Article  PubMed  CAS  Google Scholar 

  50. Wenzel SE, Szefler SJ, Leung DYM, et al.: Bronchoscopic evaluation of severe asthma: persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med 1997, 156:737–743.

    PubMed  CAS  Google Scholar 

  51. Kuwano K, Bosken CH, Pare PD, et al.: Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 1993, 148:1220–1225.

    PubMed  CAS  Google Scholar 

  52. Carroll NG, Cooke C, James AL: Bronchial blood vessel dimensions in asthma. Am J Respir Crit Care Med 1997, 155:689–695.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, A.L. Peripheral airways in asthma. Curr Allergy Asthma Rep 2, 166–174 (2002). https://doi.org/10.1007/s11882-002-0012-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-002-0012-3

Keywords

Navigation