Skip to main content
Log in

Performance of children with developmental dyslexia on high and low topological entropy artificial grammar learning task

  • Published:
Annals of Dyslexia Aims and scope Submit manuscript

Abstract

Graph complexity as measured by topological entropy has been previously shown to affect performance on artificial grammar learning tasks among typically developing children. The aim of this study was to examine the effect of graph complexity on implicit sequential learning among children with developmental dyslexia. Our goal was to determine whether children’s performance depends on the complexity level of the grammar system learned. We conducted two artificial grammar learning experiments that compared performance of children with developmental dyslexia with that of age- and reading level-matched controls. Experiment 1 was a high topological entropy artificial grammar learning task that aimed to establish implicit learning phenomena in children with developmental dyslexia using previously published experimental conditions. Experiment 2 is a lower topological entropy variant of that task. Results indicated that given a high topological entropy grammar system, children with developmental dyslexia who were similar to the reading age-matched control group had substantial difficulty in performing the task as compared to typically developing children, who exhibited intact implicit learning of the grammar. On the other hand, when tested on a lower topological entropy grammar system, all groups performed above chance level, indicating that children with developmental dyslexia were able to identify rules from a given grammar system. The results reinforced the significance of graph complexity when experimenting with artificial grammar learning tasks, particularly with dyslexic participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Psychiatric Association. (2013). Cautionary statement for forensic use of DSM-5. In Diagnostic and statistical manual of mental disorders (5th ed.). doi:10.1176/appi.books.9780890425596.744053

  • Arciuli, J., & Simpson, I. (2012). Statistical learning is related to reading ability in children and adults. Cognitive Science, 36, 286–304.

    Article  Google Scholar 

  • Bailey, T. M., & Pothos, E. M. (2008). AGL StimSelect: software for automated selection of stimuli for artificial grammar learning. Behavior Research Methods, 40, 164–176. doi:10.3758/BRM.40.1.164.

    Article  Google Scholar 

  • Bennett, I. J., Romano, J. C., Howard, J. H., & Howard, D. V. (2008). Two forms of implicit learning in young adult dyslexics. Annals of the New York Academy of Science., 1145, 184–198. doi:10.1196/annals.1416.006.

    Article  Google Scholar 

  • Berry, D., Dienes, ZP. (1993). Implicit learning: theoretical and empirical issues. Lawrence Erlbaum Associates.

  • Bertels, J., Franco, A., & Destrebecqz, A. (2012). How implicit is visual statistical learning? Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publication. doi:10.1037/a0027210.

    Google Scholar 

  • Bollt, E. M., & Jones, M. A. (2000). The complexity of artificial grammars. Nonlinear Dynamics, Psychology & Life Science, 4, 153–168.

    Article  Google Scholar 

  • Channon, S., Shanks, D., Johnstone, T., Vakili, K., Chin, J., & Sinclair, E. (2002). Is implicit learning spared in amnesia? Rule abstraction and item familiarity in artificial grammar learning. Neuropsychologia, 40, 2185–2197.

    Article  Google Scholar 

  • Conway, C. M., & Christiansen, M. H. (2006). Statistical learning within and between modalities: pitting abstract against stimulus-specific representations. Psychological Science, 17, 905–912.

    Article  Google Scholar 

  • Démonet, J. F., Taylor, M. J., & Chaixc, Y. (2004). Developmental dyslexia. The Lancet, 363, 1451–1460. doi:10.1016/S0140-6736(04)16106-0.

    Article  Google Scholar 

  • Evans, J. L., Saffran, J. R., & Robe-Torres, K. (2009). Statistical learning in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 52, 321–335.

    Article  Google Scholar 

  • Facoetti, A., Paganoni, P., Turatto, M., Marzola, V., & Mascetti, G. G. (2000). Visual-spatial attention in developmental dyslexia. Cortex, 36, 109–123. doi:10.1016/S0010-9452(08)70840-2.

    Article  Google Scholar 

  • Fletcher, J. M. (2009). Dyslexia: the evolution of a scientific concept. Journal of International Neuropsychological Society, 15, 501–508.

    Article  Google Scholar 

  • Folia, V., Uddén, J., Forkstam, C., Ingvar, M., Hagoort, P., & Peterssona, K. M. (2008). Implicit learning and dyslexia. Annals of the New York Academy of Science., 1145, 132–150. doi:10.1196/annals.1416.012.

    Article  Google Scholar 

  • Forkstam, C., Hagoort, P., Fernandez, G., Ingvar, M., & Petersson, K. M. (2006). Neural correlates of artificial syntactic structure classification. NeuroImage, 32(2), 956–967.

  • Gabay, Y., Schiff, R., & Vakil, E. (2012). Dissociation between the procedural learning of letter names and motor sequences in developmental dyslexia. Neuropsychologia, 50, 2435–2441. doi:10.1016/j.neuropsychologia.2012.06.014.

    Article  Google Scholar 

  • Gerken, L. A., Wilson, R., & Lewis, W. (2005). 17-month-olds can use distributional cues to form syntactic categories. Journal of Child Language, 32, 249–268.

    Article  Google Scholar 

  • Gombert, J. E. (2003). Implicit and explicit learning to read: implication as for subtypes of dyslexia. Current Psychology Letters, 10, 1–8.

    Google Scholar 

  • Habib, M. (2000). The neurological basis of developmental dyslexia: an overview and working hypothesis. Brain, 123, 2373–2399. doi:10.1093/brain/123.12.2373.

    Article  Google Scholar 

  • Howard, J. H., Howard, V. D., Japiksea, K. C., & Eden, G. F. (2006). Dyslexics are impaired on implicit higher-order sequence learning, but not on implicit spatial context learning. Neuropsychologia, 44, 1131–1144. doi:10.1016/j.neuropsychologia.2005.10.015.

    Article  Google Scholar 

  • Hsu, H. J., & Bishop, D. V. M. (2011). Grammatical difficulties in children with specific language impairment: is learning deficient? Europe PMC Funders Group Author Manuscript, 53, 264–277. doi:10.1159/000321289.

    Google Scholar 

  • Kahta, S., & Schiff, R. (2016). Implicit learning deficit among adults with developmental dyslexia: evidence from the AGL study. Annals of Dyslexia.

  • Kerkhoff, A., De Bree, E., De Klerk, M., & Wijnen, F. (2013). Non-adjacent dependency learning in infants at familial risk of dyslexia. Journal of Child Language, 40, 11–28. doi:10.1017/S0305000912000098.

    Article  Google Scholar 

  • Kinder, A., & Assmann, A. (2000). Learning artificial grammars: no evidence for the acquisition of rules. Memory & Cognition 2000, 28, 1321–1332. doi:10.3758/BF03211833.

    Article  Google Scholar 

  • Knowlton, B. J., & Squire, L. R. (1996). Artificial grammar learning depends on implicit acquisition of both abstract and exemplar-specific information. Journal of Experimental Psychology Learning, Memory and Cognition, 22, 169–181. doi:10.1037//0278-7393.22.1.169.

    Article  Google Scholar 

  • Landerl, K., Wimmer, H., & Frith, U. (1997). The impact of orthographic consistency on dyslexia: A German–English comparison. Cognition, 63, 315–334.

  • Landerl, K., Ramus, F., Moll, K., Lyytinen, H., Leppänen, P. H., Lohvansuu, K., … & Kunze, S. (2013). Predictors of developmental dyslexia in European orthographies with varying complexity. Journal of Child Psychology and Psychiatry, 54, 686–694.

  • Mathews, R. C., Buss, R. R., Stanley, W. B., Blanchard-Fields, F., Cho, J. R., & Druhan, B. (1989). Role of implicit and explicit processes in learning from examples: a synergistic effect. Journal of Experimental Psychology:Learning, Memory, and Cognition, 15, 1083–1110. doi:10.1037/0278-7393.15.6.1083.

    Google Scholar 

  • Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82(3), B101–B111.

    Article  Google Scholar 

  • Menghini, D., Hagbergb, G. E., Caltagirone, C., Petrosinid, L., & Vicaria, S. (2006). Implicit learning deficits in dyslexic adults: an fMRI study. NeuroImage, 33, 1218–1226. doi:10.1016/j.neuroimage.2006.08.024.

    Article  Google Scholar 

  • Meulemans, T., Van der Linden, M., & Perruchet, P. (1998). Implicit sequence learning in children. Journal of Experimental Child Psychology, 69, 199–221.

  • Nicolson, R. I., & Fawcett, A. J. (1990). Automaticity: a new framework for dyslexia research? Cognition, 35, 159–182. doi:10.1016/0010-0277(90)90013-A.

    Article  Google Scholar 

  • Nigro, L., Jiménez-Fernández, G., Simpson, I. C., & Defior, S. (2015). Implicit learning of non-linguistic and linguistic regularities in children with dyslexia. Annals of Dyslexia, 1–17.

  • Onnis, L., Destrebecqz, A., Christiansen, M. H., Chater, N., & Cleeremans, A. (2015). Implicit learning of non-adjacent dependencies: a graded, associative account. In P. Rebuschat (Ed). Implicit and Explicit learning of languages, Amsterdam: John Benjamins.

  • Pavlidou, E. V., & Williams, J. M. (2010). Developmental dyslexia and implicit learning: evidence from an AGL transfer study. Procedia Social and Behavioral Sciences, 2, 3289–3296. doi:10.1016/j.sbspro.2010.03.503.

    Article  Google Scholar 

  • Pavlidou, E. V., & Williams, J. M. (2014). Implicit learning and reading: insights from typical children and children with developmental dyslexia using the artificial grammar learning (AGL) paradigm. Research in Developmental Disabilities, 35, 1457–1472. doi:10.1016/j.ridd.2014.03.040.

    Article  Google Scholar 

  • Pavlidou, E. V., Kelly, L. M., & Williams, J. M. (2010). Do children with developmental dyslexia have impairments in implicit learning? Dyslexia, 16, 143–161. doi:10.1002/dys.400.

    Article  Google Scholar 

  • Pavlidou, E. V., Williams, J. M., & Kelly, L. M. (2009). Artificial grammar learning in primary school children with and without developmental dyslexia. Annals of Dyslexia, 59, 55–77. doi:10.1007/s11881-009-0023-z.

    Article  Google Scholar 

  • Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101, 385–413.

    Article  Google Scholar 

  • Pennington, B. F. (2009). Diagnosing learning disorders: a neuropsychological framework (2nd ed.). New York: Guilford Press.

    Google Scholar 

  • Pennington, B. F., & Bishop, D. V. (2009). Relations among speech, language, and reading disorders. Annual Review of Psychology, 60, 283–306.

    Article  Google Scholar 

  • Perruchet, P., Vinter, A. S., & Michael A. (1998). Learning and development: the implicit knowledge assumption reconsidered. Handbook of implicit learning. (Ed); Frensch, Peter A. 495–531. Thousand Oaks, CA: Sage, Inc, xi, 636 pp.

  • Petersson, K. M., Forkstam, C., & Ingvar, M. (2004). Artificial syntactic violations activate Broca’s region. Cognitive Science, 28, 383–407.

  • Pothos, E. M. (2007). Theories of artificial grammar learning. Psychological Bulletin, 133, 227–244. doi:10.1037/0033-2909.133.2.227.

    Article  Google Scholar 

  • Pothos, E. M. (2010). An entropy model for artificial grammar learning. Frontiers in Psychology, 1, 1–13. doi:10.3389/fpsyg.2010.00016.

    Google Scholar 

  • Pothos, E. M., & Kirk, J. (2004). Investigating learning deficits associated with dyslexia. Dyslexia, 10, 61–76.

    Article  Google Scholar 

  • Ramus, F., & Ahissar, M. (2012). Developmental dyslexia: the difficulties of interpreting poor performance, and the importance of normal performance. Cognitive Neuropsychology. Issue 1-2, 29, 104–122. doi:10.1080/02643294.2012.677420.

    Google Scholar 

  • Reali, F., & Christiansen, M. H. (2007). Word-chunk frequencies affect the processing of pronominal object-relative clauses. Quarterly Journal of Experimental Psychology, 60, 161–170.

    Article  Google Scholar 

  • Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6, 855–863. doi:10.1016/S0022-5371(67)80149-X.

    Article  Google Scholar 

  • Reber, A. S. (1993). Implicit learning and tacit knowledge: an essay on the cognitive unconscious. NY: Oxford University Press. doi:10.1093/acprof:oso/9780195106589.001.0001.

    Google Scholar 

  • Russeler, J., Gerth, I., & Monte, T. F. (2006). Implicit learning is intact in adult developmental dyslexic readers: Evidence from the serial reaction time task and artificial grammar learning. Journal of Clinical and Experimental Neuropsychology, 28(5), 808–827.

  • Sallas, B., Mathews, R. C., Lane, S. M., & Sun, R. (2007). Developing rich and quickly accessed knowledge of an artificial grammar. Memory and Cognition, 35, 2118–2133.

  • Schiff, R., & Kahta, S. (2006). Single-word reading test: vowelized and unvowelized word reading. Ramat Gan, Israel: Haddad Center, Bar-Ilan University.

    Google Scholar 

  • Schiff, R., & Katan, P. (2014). Does complexity matter? Meta-analysis of learner performance in artificial grammar tasks. Frontiers in Psychology, 5, article 1084. doi:10.3389/fpsyg.2014.01084.

    Article  Google Scholar 

  • Seymour, P. H. K., Aro, M., & Erskine, J. M. (2003). Foundation literacy acquisition in European orthographies. British Journal of Psychology, 94, 143–174.

  • Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: Theoretical perspectives and empirical evidence. Journal of Memory and Language, 81, 105–120.

  • Simon, H. A. (1979). Models of thought. New Haven, CT: Yale University Press.

    Google Scholar 

  • Share, D. L. (2008). Orthographic learning, phonology and the self-teaching hypothesis . In R. Kail (Ed.), Advances in Child Development and Behavior, 36, (pp. 31-82). Amsterdam: Elsevier

  • Snowling, M. J. (2000). Dyslexia. Blackwell Publishing Dyslexia (2nd ed.). doi:10.1016/B978-0-12-375000-6.00139-7

  • Stein, J. (2001). The magnocellular theory of developmental dyslexia. Dyslexia, 7, 12–36. doi:10.1002/dys.186.

    Article  Google Scholar 

  • Stein, J., & Walsh, V. (1997). To see but not to read; the magnocellular theory of dyslexia. Trends in Neurosciences, 20, 147–152. doi:10.1016/S0166-2236(96)01005-3.

    Article  Google Scholar 

  • Stoodley, C. J., Harrison, E. P. D., & Stein, J. F. (2007). Implicit motor learning deficits in dyslexic adults. Neuropsychologia, 44, 795–798. doi:10.1016/j.neuropsychologia.2005.07.009.

    Article  Google Scholar 

  • Swanson, H. L., & Jerman, O. (2007). The influence of working memory on reading growth in subgroups of children with reading disabilities. Journal of Experimental Child Psychology, 96, 249–283. doi:10.1016/j.jecp.2006.12.004.

    Article  Google Scholar 

  • Tanaka, D., Kiyokawa, S., Yamada, A., Dienes, Z. N., & Shigemasu, K. (2008). Role of selective attention in artificial grammar learning. Psychonomic Bulletin & Review, 15(6), 1154–1159.

    Article  Google Scholar 

  • Van den Bos, E., & Poletiek, F. H. (2008). Effects of grammar complexity on artificial grammar learning. Memory & Cognition, 36, 1122–1131. doi:10.3758/MC.36.6.1122.

    Article  Google Scholar 

  • Van den Bos, E. & Poletiek, F.H. (2015). Learning simple and complex artificial grammars in the presence of a semantic reference field: effects on performance and awareness. Frontiers in Psychology, article 158. doi:10.3389/fpsyg.2015.00158.

  • Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology & Psychiatry, 45(1), 2–40.

  • Vicari, S., Finzi, A., Menghini, D., Marotta, L., Baldi, S., & Petrosini, L. (2005). Do children with developmental dyslexia have an implicit learning deficit? Journal of Neurology, Neurosurgery and Psychiatry, 76, 1392–1397.

    Article  Google Scholar 

  • Vidyasagar, T. R. (1999). A neuronal model of attentional spotlight: Parietal guiding the temporal. Brain Research Reviews, 30, 6–76.

  • Vinter, A., & Perruchet, P. (2002). Implicit motor learning through observational training in adults and children. Memory and Cognition, 30, 256–261.

  • Weiss, Y., Katzir, T., & Bitan, T. (2015). The effects of orthographic transparency and familiarity on reading Hebrew words in adults with and without dyslexia. Annals of Dyslexia, 65, 84–102.

    Article  Google Scholar 

  • Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: a psycholinguistic grain size theory. Psychological Bulletin, 13, 3–29. doi:10.1037/0033-2909.131.1.3.

    Article  Google Scholar 

  • Ziegler, J. C., Bertrand, D., Tóth, D., Csépe, V., Reis, A., Faísca, L., et al. (2010). Orthographic depth and its impact on universal predictors of reading: A cross-language investigation. Psychological Science, 21, 551–559.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Schiff.

Additional information

Pesia Katan is part of the research conducted at Bar Ilan University, Ramat Gan, Israel, as partial fulfillment of her requirement for a Doctor of Philosophy degree

Electronic supplementary material

ESM 1

(PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katan, P., Kahta, S., Sasson, A. et al. Performance of children with developmental dyslexia on high and low topological entropy artificial grammar learning task. Ann. of Dyslexia 67, 163–179 (2017). https://doi.org/10.1007/s11881-016-0135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11881-016-0135-1

Keywords

Navigation