Skip to main content
Log in

Air pollution and health: bridging the gap from sources to health outcomes: conference summary

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

“Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes,” an international specialty conference sponsored by the American Association for Aerosol Research, was held to address key uncertainties in our understanding of adverse health effects related to air pollution and to integrate and disseminate results from recent scientific studies that cut across a range of air pollution-related disciplines. The Conference addressed the science of air pollution and health within a multipollutant framework (herein “multipollutant” refers to gases and particulate matter mass, components, and physical properties), focusing on five key science areas: sources, atmospheric sciences, exposure, dose, and health effects. Eight key policy-relevant science questions integrated across various parts of the five science areas and a ninth question regarding findings that provide policy-relevant insights served as the framework for the meeting. Results synthesized from this Conference provide new evidence, reaffirm past findings, and offer guidance for future research efforts that will continue to incrementally advance the science required for reducing uncertainties in linking sources, air pollutants, human exposure, and health effects. This paper summarizes the Conference findings organized around the science questions.

A number of key points emerged from the Conference findings. First, there is a need for greater focus on multipollutant science and management approaches that include more direct studies of the mixture of pollutants from sources with an emphasis on health studies at ambient concentrations. Further, a number of research groups reaffirmed a need for better understanding of biological mechanisms and apparent associations of various health effects with components of particulate matter (PM), such as elemental carbon, certain organic species, ultrafine particles, and certain trace elements such as Ni, V, and Fe(II), as well as some gaseous pollutants. Although much debate continues in this area, generation of reactive oxygen species induced by these and other species present in air pollution and the resulting oxidative stress and inflammation were reiterated as key pathways leading to respiratory and cardiovascular outcomes. The Conference also underscored significant advances in understanding the susceptibility of populations, including the role of genetics and epigenetics and the influence of socioeconomic and other confounding factors and their synergistic interactions with air pollutants. Participants also pointed out that short- and long-term intervention episodes that reduce pollution from sources and improve air quality continue to indicate that when pollution decreases so do reported adverse health effects. In the limited number of cases where specific sources or PM2.5 species were included in investigations, specific species are often associated with the decrease in effects. Other recent advances for improved exposure estimates for epidemiological studies included using new technologies such as microsensors combined with cell phone and integrated into real-time communications, hybrid air quality modeling such as combined receptor- and emission-based models, and surface observations used with remote sensing such as satellite data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. American Association for Aerosol Research International Specialty Conference, San Diego, CA, March 22–26, 2010.

  2. US EPA uses the word “nominal” to encompass the collection efficiency curve’s cut point and slope with regard to regulatory particle size distributions (PM10, PM2.5, and PMc) in an effort to prevent misinterpretation of the curve as a step function. All uses of size distribution throughout this document, as referenced above, should be considered as “nominal,” i.e., not being a step function, whether in reference to a regulatory size range or not.

  3. US EPA’s convention for particles in the coarse particle range is PM10–2.5, but PMc is used throughout as shorthand.

  4. BC is an optical measurement of dark particles in air similar to, but not the same as, elemental carbon, a measurement obtained by thermal analysis. See Fehsenfeld et al. (2004) for clarification.

  5. See special issues by Solomon and Hopke (2008a, b).

Abbreviations

AAAR:

American Association for Aerosol Research

ACS:

American Cancer Society

AD:

Aerodynamic diameter

AER:

Air exchange rate

AERMOD:

American Meteorological Society/EPA Regulatory Model

AOD:

Aerosol optical depth

BAD:

Brachial artery diameter

BALF:

Bronchoalveolar lavage fluid

BC:

Black carbon

CAPs:

Concentrated ambient particles

CMAQ:

Community Multiscale Air Quality model

CMB:

Chemical mass balance

COD:

Coefficient of determination

CRF:

Concentration–response function

CS:

Central site

CV:

Cardiovascular

DTT:

Dithiothreitol

EBC:

Exhaled breath condensate

EC:

Elemental carbon

ED:

Emergency department

ETC:

Electron transport chain

FeNO :

Fractional exhaled NO

GST:

Glutathione-S-transferase

HAP:

Hazardous air pollutant

HEI:

Health Effects Institute

HRV:

Heart rate variability

ICRP:

International Commission on Radiological Protection

iF:

Intake fraction

ISA:

Integrated Science Assessment

LEZ:

Low emission zone

LUR:

Land-use regression

MICA:

Mechanistic Indicators of Childhood Asthma

NAAQS:

National Ambient Air Quality Standards

NO x :

Nitrogen oxides

NRC:

National Research Council

OC:

Organic carbon

ORD:

Office of Research and Development

OVA:

Ovalbumin

PAH:

Polycyclic aromatic hydrocarbon

PCA:

Principal component analysis

PM:

Particulate matter

PM0.1 :

Ultrafine particles usually considered less than 0.1 μm AD; also referred to as UF

PM10 :

Particles in the size range equal to or less than a nominal 10-μm AD

PM2.5 :

Fine particles in the size range less than a nominal 2.5-μm AD; also referred to as PMf

PMc:

Coarse particles in the size range between a nominal 2.5-μm and a nominal 10-μm AD

PMf:

Fine particles in the size range less than a nominal 2.5-μm AD; also referred to as PM2.5

PMF:

Positive matrix factorization

PMN:

Polymorphonuclear neutrophil

POA:

Primary organic aerosol

RH:

Relative humidity

ROFA:

Residual oil fly ash

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription polymerase chain reaction

SADI:

Surface area deposition index

SES:

Socioeconomic status

SNP:

Single nucleotide polymorphism

SOA:

Secondary organic aerosol

SQ:

Science question

SRM:

Standard Reference Material

T :

Temperature

TBARS:

Thiobarbituric reactive substance

TOA:

Thermal–optical analysis

UF:

Ultrafine particles usually considered less than 0.1 μm AD; also referred to as PM0.1

USC:

University of Southern California

UV:

Ultraviolet

WSOC:

Water-soluble organic carbon

References

  • Alexander DJ, Collins CJ, Coombs DW, Gilkison IS, Hardy CJ, Healey G, Karantabias G, Johnson N, Karlsson A, Kilgour JD, McDonald P (2008) Association of Inhalation Toxicologists (AIT) Working Party recommendation for standard delivered dose calculation and expression in nonclinical aerosol inhalation toxicology studies with pharmaceuticals. Inhal Toxicol 20:1179–1189

    Article  CAS  Google Scholar 

  • Allen DT, Turner JR (2008) Transport of atmospheric fine particulate matter: part 1—findings from recent field programs on the extent of regional transport within North America. J Air Waste Manage Assoc 58:254–264

    Article  Google Scholar 

  • Anderson HR (2009) Air pollution and mortality: a history. Atmos Environ 43:142–152. doi:10.1016/j.atmosenv.2008.09.026

    Article  CAS  Google Scholar 

  • Ayala A, Brauer M, Mauderly JL, Samet JM (2011) Air pollutants and sources associated with health effects. Air Quality Atmos Health. doi:10.1007/s11869-011-0155-2

  • Bailey MR, Ansoborlo E, Guilmette RA, Paquet F (2007) Updating the ICRP human respiratory tract model. Radiat Prot Dosimetry 127(1–4):31–34. doi:10.1093/rpd/ncm249

    Article  CAS  Google Scholar 

  • Beelen R, Hoek G, van den Brandt PA, Goldbohm RA, Fischer P, Schouten LJ, Armstrong B, Brunekreef B (2008) Long-term exposure to traffic-related air pollution and lung cancer risk. Epidemiol 19:702–710

    Article  Google Scholar 

  • Bell ML, Ebisu K, Peng RD, Samet JM, Dominici F (2009) Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 179:1115–1120

    Article  CAS  Google Scholar 

  • Block ML, Calderón-Garcidueñas L (2009) Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32(9):506–516

    Article  CAS  Google Scholar 

  • Braniš M, Vyškovská J, Malý M, Hovorka J (2010) Association of size-resolved number concentrations of particulate matter with cardiovascular and respiratory hospital admissions and mortality in Prague, Czech Republic. Inhal Toxicol 22(S2):21–28

    Article  CAS  Google Scholar 

  • Brauer M (2010) How much, how long, what, and where: air pollution exposure assessment for epidemiologic studies of respiratory disease. Proc Am Thorac Soc 7:111–115

    Article  Google Scholar 

  • Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD, on behalf of the American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378

    Article  CAS  Google Scholar 

  • Brown JS, Wilson WE, Grant LD (2005) Dosimetric comparisons of particle deposition and retention in rats and humans. Inhal Toxicol 17:355–385

    Article  CAS  Google Scholar 

  • Burke JM, Zufall MJ, Özkaynak H (2001) A population exposure model for particulate matter: case study results for PM2.5 in Philadelphia, PA. J Expo Anal Environ Epidemiol 11:470–489

    Article  CAS  Google Scholar 

  • Burnett RT, Bartlett S, Jessiman B, Blagden P, Samson PR, Cakmak S, Steib D, Raizenne M, Brook JR, Dann T (2005) Measuring progress in the management of ambient air quality: the case for population health. J Toxicol Environ Health A 68(13–14):1289–1300

    Article  CAS  Google Scholar 

  • Buset KC, Evans GJ, Leaitch WR, Brook JR, Toom-Sauntry D (2006) Use of advanced receptor modelling for analysis of an intensive 5-week aerosol sampling campaign. Atmos Environ 40(S2):482–499

    Article  CAS  Google Scholar 

  • Cahill TA, Cahill TM, Barnes DE, Spada NJ, Miller R (2011) Inorganic and organic aerosols downwind of California’s Roseville Railyard. Aerosol Sci Technol 45(9):1049–1059

    Article  CAS  Google Scholar 

  • Canagaratna MR, Jayne JT, Jimenez JL, Allan JD, Alfarra MR, Zhang Q, Onasch TB, Drewnick F, Coe H, Middlebrook A, Delia A, Williams LR, Trimborn AM, Northway MJ, DeCarlo PF, Kolb CE, Davidovits P, Worsnop DR (2007) Chemical and microphysical characterization of ambient aerosols with the Aerodyne Aerosol Mass Spectrometer. Mass Spec Rev 26:185–222

    Article  CAS  Google Scholar 

  • Chen LC, Lippmann M (2009) Effects of metals within ambient air particulate matter (PM) on human health. Inhal Toxicol 21:1–31

    Article  CAS  Google Scholar 

  • Chow JC (1995) Measurement methods to determine compliance with ambient air quality standards for suspended particles. J Air Waste Manage Assoc 45:320–382

    CAS  Google Scholar 

  • Chow JC, Yu JZ, Watson JG, Ho SSH, Bohannan TL, Hays MD, Fung KK (2007) The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review. J Environ Sci Health Part A 42(11):1521–1541

    Article  CAS  Google Scholar 

  • Chow JC, Doraiswamy P, Watson JG, Chen L-WA, Ho SSH, Sodeman DA (2008) Advances in integrated and continuous measurements for particle mass and chemical composition. J Air Waste Manage Assoc 58(2):141–163

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Chen L-WA, Rice J, Frank NH (2010) Quantification of PM2.5 organic carbon sampling artifacts in U.S. networks. Atmos Chem Phys 10(12):5223–5239

    Article  CAS  Google Scholar 

  • Chuang K-J, Chan C-C, Su T-C, Lin L-Y, Lee C-T (2007) Associations between particulate sulfate and organic carbon exposures and heart rate variability in patients with or at risk for cardiovascular diseases. J Occup Environ Med 49:610–617

    Article  CAS  Google Scholar 

  • Chuang KJ, Coull BA, Zanobetti A, Suh H, Schwartz J, Stone PH, Litonjua A, Speizer FE, Gold DR (2008) Particulate air pollution as a risk factor for ST-segment depression in patients with coronary artery disease. Circulation 118(13):1314–1320

    Article  CAS  Google Scholar 

  • Clancy L, Goodman P, Sinclair H, Dockery DW (2002) Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet 360(9341):1210–1214

    Article  Google Scholar 

  • Clarke RW, Coull B, Reinisch U, Catalano P, Killingsworth CR, Koutrakis P, Kavouras I, Murthy GG, Lawrence J, Lovett E, Wolfson JM, Verrier RL, Godleski JJ (2000) Inhaled concentrated ambient particles are associated with hematologic and bronchoalveolar lavage changes in canines. Environ Health Perspect 108:1179–1187

    Article  CAS  Google Scholar 

  • Cohen AJ, Pope CA 3rd (1995) Lung cancer and air pollution. Environ Health Perspect 103(Suppl 8):219–224

    Article  Google Scholar 

  • Cohen Hubal EA, Richard AM, Shah I, Gallagher J, Kavlock R, Blancato J, Edwards SW (2010) Exposure science and the U.S. EPA National Center for Computational Toxicology. J Expo Sci Environ Epidemiol 20:231–236

    Article  CAS  Google Scholar 

  • Craig L, Brook JR, Chiotti Q, Croes B, Gower S, Hedley A, Krewski D, Krupnick A, Krzyanowski M, Moran MD, Pennell W, Samet JM, Schneider J, Shortreed J, Williams M (2008) Air pollution and public health: a guidance document for risk managers. J Toxicol Environ Health A 71:588–698

    Article  CAS  Google Scholar 

  • Crouse DL, Goldberg MS, Ross NA (2009) A prediction-based approach to modelling temporal and spatial variability of traffic-related air pollution in Montreal, Canada. Atmos Environ 43(32):5075–5084. doi:10.1016/j.atmosenv.2009.06.040

    Article  CAS  Google Scholar 

  • Cuevas AK, Liberda EN, Gillespie PA, Allina J, Chen LC (2010) Inhaled nickel nanoparticles alter vascular reactivity in C57BL/6 mice. Inhal Toxicol 22(S2):100–106

    Article  CAS  Google Scholar 

  • Delfino RJ, Staimer N, Tjoa T, Polidori A, Arhami M, Gillen DL, Kleinman MT, Vaziri ND, Longhurst J, Zaldivar F, Sioutas C (2008) Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ Health Perspect 116:898–906

    Article  CAS  Google Scholar 

  • Delfino RJ, Staimer N, Tjoa T, Gillen DL, Polidori A, Arhami M, Kleinman MT, Vaziri ND, Longhurst J, Sioutas C (2009) Air pollution exposures and circulating biomarkers of effect in a susceptible population: clues to potential causal component mixtures and mechanisms. Environ Health Perspect 117:1232–1238

    Article  CAS  Google Scholar 

  • Demerjian KL, Mohnen VA (2008) Synopsis of the temporal variation of particulate matter composition and size. J Air Waste Manage Assoc 58(2):216–233

    Article  CAS  Google Scholar 

  • Dominici F, Peng RD, Ebisu K, Zeger SL, Samet JM, Bell ML (2007) Does the effect of PM10 on mortality depend on PM nickel and vanadium content? A reanalysis of the NMMAPS data. Environ Health Perspect 115:1701–1703

    Article  Google Scholar 

  • Dominici F, Peng RD, Barr CD, Bell ML (2010) Protecting human health from air pollution: shifting from a single-pollutant to a multipollutant approach. Epidemiol 21:187–194

    Article  Google Scholar 

  • Dubowsky SD, Suh H, Schwartz J, Coull BA, Gold DR (2006) Diabetes, obesity, and hypertension may enhance associations between air pollution and markers of systemic inflammation. Environ Health Perspect 114:992–998

    Article  CAS  Google Scholar 

  • Elder A, Oberdörster G (2006) Translocation and effects of ultrafine particles outside of the lung. Clin Occup Environ Med 5(4):785–796

    Google Scholar 

  • EPA (2003) Framework for cumulative risk assessment. Risk Assessment Forum, EPA/630/P-02/001F. U.S. Environmental Protection Agency, Washington, DC. http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=36941. Accessed 19 Jul 2011

  • EPA (2008a) Ambient air quality monitoring and health research: summary of April 16–17, 2008, workshop to discuss key issues. US Environmental Protection Agency, Office of Research and Development and Office of Air Quality Planning and Standards, Research Triangle Park

    Google Scholar 

  • EPA (2008b) Clean air research multi-year plan 2008–2012 (EPA 620R-08/001). U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC. http://www.epa.gov/research/npd/pdfs/Air-MYP-narrative-final.pdf. Accessed 19 Jul 2011

  • EPA (2009a) Integrated science assessment for particulate matter (EPA/600/R-08/139F). U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC. http://www.epa.gov/ncea/pdfs/partmatt/Dec2009/PM_ISA_full.pdf. Accessed 19 Jul 2011

  • EPA (2009b) Susceptible populations. U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC. http://www.epa.gov/nerl/goals/health/populations.html. Accessed 19 Jul 2011

  • Faiola C, Johansen AM, Rybka S, Nieber A, Thomas C, Bryner S, Johnston J, Engelhard M, Nachimuthu P, Owens KS (2011) Ultrafine particulate ferrous iron and anthracene associations with mitochondrial dysfunction. Aerosol Sci Technol 45(9):1109–1122

    Article  CAS  Google Scholar 

  • Federal Register (2006) National ambient air quality standards for particulate matter: final rule, 40 CFR Part 50 Federal Register 71(200):61144. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC. Part 50 available at http://www.gpo.gov/fdsys/pkg/FR-2006-10-17/pdf/06-8477.pdf#page=1. Accessed 19 Jul 2011

  • Fehsenfeld F, Hastie D, Chow J, Solomon P (2004) Particle and gas measurements. In: McMurry P, Shepherd M, Vickery J (eds) Particulate matter science for policy makers: a NARSTO assessment. Cambridge University Press, Cambridge, pp 159–189

    Google Scholar 

  • Finlay WH, Martin AR (2008) Recent advances in predictive understanding of respiratory tract deposition. J Aerosol Med Pulm Drug Deliv 21:189–206

    Article  Google Scholar 

  • Fischer P, Hoek G, Brunekreef B, Verhoeff A, van Wijnen J (2003) Air pollution and mortality in The Netherlands: are the elderly more at risk? Eur Respir J 21(Suppl 40):34s–38s

    Article  CAS  Google Scholar 

  • Frampton MW, Ghio AJ, Samet JM, Carson JL, Carter JD, Devlin RB (1999) Effects of aqueous extracts of PM10 filters from the Utah Valley on human airway epithelial cells. Am J Physiol 277:L960–L967

    CAS  Google Scholar 

  • Franklin M, Koutrakis P, Schwartz J (2008) The role of particle composition on the association between PM2.5 and mortality. Epidemiol 19:680–689

    Article  Google Scholar 

  • Freney EJ, Heal MR, Donovan RJ, Mills NL, Donaldson K, Newby DE, Fokkens PH, Cassee FR (2006) A single-particle characterization of a mobile Versatile Aerosol Concentration Enrichment System for exposure studies. Part Fibre Toxicol 24(3):8. doi:10.1186/1743-8977-3-8

    Article  CAS  Google Scholar 

  • Friedman MS, Powell KE, Hutwagner L, Graham LM, Teague WG (2001) Impact of changes in transportation and commuting behaviors during the 1996 Summer Olympic Games in Atlanta on air quality and childhood asthma. J Am Med Assoc 285:897–905

    Article  CAS  Google Scholar 

  • Gauderman WJ, Avol E, Gilliland F, Vora H, Thomas D, Berhane K, McConnell R, Kuenzli N, Lurmann F, Rappaport E, Margolis H, Bates D, Peters J (2004) The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med 351:1057–1067

    Article  CAS  Google Scholar 

  • Gent JF, Koutrakis P, Belanger K, Triche E, Holford TR, Bracken MB, Leaderer BP (2009) Symptoms and medication use in children with asthma and traffic-related sources of fine particle pollution. Environ Health Perspect 117:1168–1174

    Article  CAS  Google Scholar 

  • Gerlofs-Nijland ME, van Berlo D, Cassee FR, Schins RP, Wang K, Campbell A (2010) Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part Fibre Toxicol 17(7):12. doi:10.1186/1743-8977-7-12

    Article  CAS  Google Scholar 

  • Ghio AJ, Kim C, Devlin RB (2000) Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med 162:981–988

    CAS  Google Scholar 

  • Grahame TJ, Schlesinger RB (2007) Health effects of airborne particulate matter: do we know enough to consider regulating specific particle types or sources? Inhal Toxicol 19:457–481

    Article  CAS  Google Scholar 

  • Grahame TJ, Schlesinger RB (2010) Cardiovascular health and particulate vehicular emissions: a critical evaluation of the evidence. Air Qual Atmos Health 3(1):3–27

    Article  CAS  Google Scholar 

  • Greenbaum D, Shaikh R (2010) First steps toward multipollutant science for air quality decisions. Epidemiol 21:195–197

    Article  Google Scholar 

  • Greenland S (1980) The effect of misclassification in the presence of covariates. Am J Epidemiol 112:564–569

    CAS  Google Scholar 

  • Gupta P, Christopher SA, Wang J, Gehrig R, Lee Y, Kumar N (2006) Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos Environ 40:5880–5892

    Article  CAS  Google Scholar 

  • Gurgueira SA, Lawrence J, Coull B, Krishna Murthy GG, Gonzalez-Flecha B (2002) Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect 110:749–755

    Article  CAS  Google Scholar 

  • Hedley AJ, Wong CM, Thach TQ, Ma S, Lam TH, Anderson HR (2002) Cardiorespiratory and all-cause mortality after restrictions on sulphur content of fuel in Hong Kong: an intervention study. Lancet 360:1646–1652

    Article  Google Scholar 

  • Hedley AJ, Chau PYK, Wong CM (2004) The change in sub-species of particulate matter [PM10] before and after an intervention to restrict sulphur content of fuel in Hong Kong. Poster presented at Better Air Quality/Asian Development Bank Meeting, Agra, India

  • HEI (2002) Understanding the health effects of the particulate matter mix: progress and next steps. HEI perspectives. Health Effects Institute, Boston

    Google Scholar 

  • HEI (2003) Assessing health impact of air quality regulations: concepts and methods for accountability research. Communication 11. Executive summary, HEI Accountability Working Group. Health Effects Institute, Boston

    Google Scholar 

  • HEI (2010) Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects. Special Report 17. Health Effects Institute, Boston. http://pubs.healtheffects.org/view.php?id=334. Accessed 19 Jul 2011.

  • Hering S, Cass G (1999) The magnitude of bias in the measurement of PM2.5 arising from volatilization of particulate nitrate from Teflon filters. J Air Waste Manage Assoc 49(6):725–733

    CAS  Google Scholar 

  • Hidy GM, Pennell WT (2010) Multipollutant air quality management. J Air Waste Manage Assoc 60:645–674

    Article  CAS  Google Scholar 

  • Hoff RM, Christopher SA (2009) Remote sensing of particulate matter air pollution from space: have we reached the promised land? J Air Waste Manage Assoc 59:642–675. doi:10.3155/1047-3289.59.6.642

    Article  Google Scholar 

  • Holguin F (2008) Traffic, outdoor air pollution, and asthma. Immunol Allergy Clin North Am 28:577–588

    Article  Google Scholar 

  • ICRP (1994) Human respiratory tract model for radiological protection, Publication 66. International Commission on Radiological Protection, Task Group of Committee 2. Pergamon, New York

    Google Scholar 

  • ICRP (1995) Human respiratory tract model for radiological protection: a report of a task group of the International Commission on Radiological Protection. Ann ICRP 24:1–482

    Google Scholar 

  • Ito K, Christensen WF, Eatough DJ, Henry RC, Kim E, Laden F, Lall R, Larson TV, Neas L, Hopke PK, Thurston GD (2006) PM source apportionment and health effects: 2. An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. J Expo Sci Environ Epidemiol 16(4):300–310

    Article  CAS  Google Scholar 

  • Jacobs L, Emmerechts J, Mathieu C, Hoylaerts MF, Fierens F, Hoet PH, Nemery B, Nawrot TS (2010) Air pollution related prothrombotic changes in persons with diabetes. Environ Health Perspect 118:191–196

    Article  CAS  Google Scholar 

  • Jalava PI, Tapanainen M, Kuuspalo K, Markkanen A, Hakulinen P, Happo MS, Pennanen AS, Ihalainen M, Yli-Pirilä P, Makkonen U, Teinilä K, Mäki-Paakkanen J, Salonen RO, Jokiniemi J, Hirvonen MR (2010) Toxicological effects of emission particles from fossil- and biodiesel-fueled diesel engine with and without DOC/POC catalytic converter. Inhal Toxicol 22(S2):48–58

    Article  CAS  Google Scholar 

  • Janssen NAH, Schwartz J, Zanobetti A, Suh HH (2002) Air conditioning and source-specific particles as modifiers of the effect of PM10 on hospital admissions for heart and lung disease. Environ Health Perspect 110:43–49

    Article  CAS  Google Scholar 

  • Jarabek AM, Asgharian B, Miller FJ (2005) Dosimetric adjustments for interspecies extrapolation of inhaled poorly soluble particles. Inhal Toxicol 17:317–334

    Article  CAS  Google Scholar 

  • Jerrett M, Newbold KB, Burnett RT, Thurston G, Lall R, Pope CA 3rd, Ma R, De Luca P, Thun M, Calle J, Krewski D (2007) Geographies of uncertainty in the health benefits of air quality improvements. Stochastic Environ Res Risk Assess 21(5):511–522

    Article  Google Scholar 

  • Kane DB, Asgharian B, Price OT, Rostami A, Oldham MJ (2010) Effect of smoking parameters on the particle size distribution and predicted airway deposition of mainstream cigarette smoke. Inhal Toxicol 22:199–209

    Article  CAS  Google Scholar 

  • Kaskaoutis DG, Kambezidis HD, Hatzianastassiou N, Kosmopoulos PG, Badarinath KVS (2007) Aerosol climatology: dependence of the Angstrom exponent on wavelength over four AERONET sites. Atmos Chem Phys Discuss 7:7347–7397

    Article  Google Scholar 

  • Kelly FJ, Kelly J (2009) London air quality: a real world experiment in progress. Biomarkers 14(Suppl 1):5–11

    Article  CAS  Google Scholar 

  • Kim SY, Sheppard L, Kim H (2009) Health effects of long-term air pollution: influence of exposure prediction methods. Epidemiol 20(3):442–450

    Article  Google Scholar 

  • Kleinman MT, Sioutas C, Froines JR, Fanning E, Hamade A, Mendez L, Meacher D, Oldham M (2007) Inhalation of concentrated ambient particulate matter near a heavily trafficked road stimulates antigen-induced airway responses in mice. Inhal Toxicol 19(Suppl 1):117–126

    Article  CAS  Google Scholar 

  • Kleinstreuer C, Zhang Z (2010) Airflow and particle transport in the human respiratory system. Ann Rev Fluid Mech 42:301–334

    Article  Google Scholar 

  • Kodavanti UP, Schladweiler MC, Ledbetter AD, Watkinson WP, Campen MJ, Winsett DW, Richards JR, Crissman KM, Hatch GE, Costa DL (2000) The spontaneously hypertensive rat as a model of human cardiovascular disease: evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter. Toxicol Appl Pharmacol 164:250–263

    Article  CAS  Google Scholar 

  • Krewski D (2009) Evaluating the effects of ambient air pollution on life expectancy. N Engl J Med 360(4):413–415

    Article  CAS  Google Scholar 

  • Krewski D, Jerrett M, Burnett RT, Ma R, Hughes E, Shi Y, Turner MC, Pope CA III, Thurston G, Calle EE, Thun MJ (2009) Extended follow-up and spatial analysis of the American Cancer Society Study linking particulate air pollution and mortality. Report 140. Health Effects Institute, Boston

    Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Moller W (2006) Health implications of nanoparticles. J Nanoparticle Res 8:543–562

    Article  CAS  Google Scholar 

  • Kumar N, Chu AD, Foster AD, Peters T, Willis R (2011) Satellite remote sensing for developing time and space resolved estimates of ambient particulate in Cleveland, OH. Aerosol Sci Technol 45(9):1090–1108

    Article  CAS  Google Scholar 

  • Laden F, Schwartz J, Speizer FE, Dockery DW (2006) Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 173:667–672

    Article  CAS  Google Scholar 

  • Langrish JP, Mills NL, Chan JK, Leseman DL, Aitken RJ, Fokkens PH, Cassee FR, Li J, Donaldson K, Newby DE, Jiang L (2009) Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask. Part Fibre Toxicol 13:6–8

    Google Scholar 

  • Lanki T, de Hartog JJ, Heinrich J, Hoek G, Janssen NAH, Peters A, Stolzel M, Timonen KL, Vallius M, Vanninen E, Pekkanen J (2006) Can we identify sources of fine particles responsible for exercise-induced ischemia on days with elevated air pollution? The ULTRA study. Environ Health Perspect 114:655–660

    Article  CAS  Google Scholar 

  • Lanz VA, Alfarra MR, Baltensperger U, Buchmann B, Hueglin C, Prevot ASH (2006) Source apportionment of submicron organic aerosols at an urban site by linear unmixing of aerosol mass spectra. Atmos Chem Phys Discuss 6:11681–11725

    Article  Google Scholar 

  • Liberda EN, Cuevas AK, Gillespie PA, Grunig G, Qu Q, Chen LC (2010) Exposure to inhaled nickel nanoparticles causes a reduction in number and function of bone marrow endothelial progenitor cells. Inhal Toxicol 22(S2):95–99

    Article  CAS  Google Scholar 

  • Lipfert FW, Baty JD, Miller JP, Wyzga RE (2006) PM2.5 constituents and related air quality variables as predictors of survival in a cohort of U.S. military veterans. Inhal Toxicol 18:645–657

    Article  CAS  Google Scholar 

  • Lipfert FW, Wyzga RE, Baty JD, Miller JP (2009) Air pollution and survival within the Washington University-EPRI Veterans Cohort: risks based on modeled estimates of ambient levels of hazardous and criteria air pollutants. J Air Waste Manage Assoc 59:473–489

    Article  CAS  Google Scholar 

  • Lippmann M (2009) Semi-continuous speciation analyses for ambient air particulate matter: an urgent need for health effects studies. J Expos Sci Environ Epidemiol 19:235–247

    Article  CAS  Google Scholar 

  • Lippmann M, Chen LC (2009) Health effects of concentrated ambient air particulate matter (CAPs) and its components. Crit Rev Toxicol 39(10):865–913

    Article  CAS  Google Scholar 

  • Lippmann M, Hwang JS, Maciejczyk P, Chen LC (2005) PM source apportionment for short-term cardiac function changes in ApoE−/− mice. Environ Health Perspect 113:1575–1579

    Article  Google Scholar 

  • Lippmann M, Ito K, Hwang JS, Maciejczyk P, Chen LC (2006) Cardiovascular effects of nickel in ambient air. Environ Health Perspect 114:1662–1669

    CAS  Google Scholar 

  • Liu Y, Koutrakis P, Kahn R (2007a) Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 1—method development. J Air Waste Manage Assoc 57:1351–1359

    Article  Google Scholar 

  • Liu Y, Koutrakis P, Kahn R, Turquety S, Yantosca RM (2007b) Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 2—a case study. J Air Waste Manage Assoc 57:1360–1369

    Article  CAS  Google Scholar 

  • Liu L, Ruddy TD, Dalipaj M, Szyszkowicz M, You H, Poon R, Wheeler A, Dales R (2007c) Influence of personal exposure to particulate air pollution on cardiovascular physiology and biomarkers of inflammation and oxidative stress in subjects with diabetes. J Occup Environ Med 49:258–265

    Article  Google Scholar 

  • Liu Y, Schichtel BA, Koutrakis P (2009a) Estimating particle sulfate concentrations using MISR retrieved aerosol properties. IEEE J Sel Top Appl Earth Obs Remote Sens 2:176–184

    Article  Google Scholar 

  • Liu Y, Paciorek CJ, Koutrakis P (2009b) Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environ Health Perspect 117:886–892

    Article  CAS  Google Scholar 

  • Maciejczyk P, Zhong M, Lippmann M, Chen LC (2010) Oxidant generation capacity of source-apportioned PM2.5. Inhal Toxicol 22(S2):29–36

    Article  CAS  Google Scholar 

  • Maejima K, Tamura K, Nakajima T, Taniguchi Y, Saito S, Takenaka H (2001) Effects of the inhalation of diesel exhaust, Kanto loam dust, or diesel exhaust without particles on immune responses in mice exposed to Japanese cedar (Cryptomeria japonica) pollen. Inhal Toxicol 13:1047–1063

    Article  CAS  Google Scholar 

  • Maimone F, Turpin BJ, Solomon P, Meng Q, Robinson AL, Subramanian R, Polidori A (2011) Correction methods for organic carbon artifacts when using quartz-fiber filters in large particulate matter monitoring networks: the regression method and other options. J Air Waste Manage Assoc 61(6):696–710

    CAS  Google Scholar 

  • Mauderly JL, Chow JC (2008) Health effects of organic aerosols. Inhal Toxicol 20:257–288

    Article  CAS  Google Scholar 

  • Mauderly JL, Burnett RT, Castillejos M, Özkaynak H, Samet JM, Stieb DM, Vedal S, Wyzga RE (2010) Is the air pollution health research community prepared to support a multipollutant air quality management framework? Inhal Toxicol 22(S1):1–19

    Article  CAS  Google Scholar 

  • McConnell R, Berhane K, Gilliland F, Molitor J, Thomas D, Lurmann F, Avol E, Gauderman WJ, Peters JM (2003) Prospective study of air pollution and bronchitic symptoms in children with asthma. Am J Respir Crit Care Med 168(7):790–797

    Article  Google Scholar 

  • McCreanor J, Cullinan P, Nieuwenhuijsen MJ, Stewart-Evans J, Malliarou E, Jarup L, Harrington R, Svartengren M, Han IK, Ohman-Strickland P, Chung KF, Zhang J (2007) Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med 357:2348–2358

    Article  CAS  Google Scholar 

  • McWilliam A, Holt P, Gehr P (2000) Dendritic cells as sentinels of immune surveillance in the airways. In: Gehr P, Heyder J (eds) Particle-lung interaction, Vol. 143. Lung Biology in Health and Disease, Exec. Ed. C. Lenfant. Marcel Dekker, Inc., New York, pp 473–490

  • Méndez LB, Gookin G, Phalen RF (2010) Inhaled aerosol particle dosimetry in mice: a review. Inhal Toxicol 22(S2):15–20

    Article  CAS  Google Scholar 

  • Meyer T, Müllinger B, Sommerer K, Scheuch G, Brand P, Beckmann H, Haussinger K, Weber N, Siekmeier R (2003) Pulmonary deposition of monodisperse aerosols in patients with chronic obstructive pulmonary disease. Exp Lung Res 29:475–484

    Article  CAS  Google Scholar 

  • Mills NL, Robinson SD, Fokkens PHB, Leseman DLAC, Miller MR, Anderson D, Freney EJ, Heal MR, Donovan RJ, Blomberg A, Sandstrom T, MacNee W, Boon NA, Newby DE, Cassee FR (2008) Exposure to concentrated ambient particles does not affect vascular function in patients with coronary heart disease. Environ Health Perspect 116:709–715

    Article  CAS  Google Scholar 

  • Moore KF, Ning Z, Ntziachristos L, Schauer JJ, Sioutas C (2007) Daily variation in the properties of urban ultrafine aerosol—part I: physical characterization and volatility. Atmos Environ 41:8633–8646

    Article  CAS  Google Scholar 

  • Moore K, Neugebauer R, Lurmann F, Hall J, Brajer V, Alcorn S, Tager I (2008) Ambient ozone concentrations cause increased hospitalizations for asthma in children: an 18-year study in Southern California. Environ Health Perspect 116:1063–1070

    Article  CAS  Google Scholar 

  • Moore K, Neugebauer R, Lurmann F, Hall J, Brajer V, Alcorn S, Tager I (2010) Ambient ozone concentrations and cardiac mortality in Southern California 1983–2000: application of a new marginal structural model approach. Am J Epidemiol 171:1233–1243

    Article  Google Scholar 

  • Moorman JE, Rudd RA, Johnson CA, King M, Minor P, Bailey C, Scalia MR, Akinbami LJ (2007) National surveillance for asthma—United States, 1980–2004. Morb Morta Weekly Rep 56(SS08):1–14, 18–54

    Google Scholar 

  • Morris RE, Koo B, Guenther A, Yarwood G, McNally D, Tesche TW, Tonnesen G, Boylan J, Brewer P (2006) Model sensitivity evaluation for organic carbon using two multi-pollutant air quality models that simulate regional haze in the southeastern United States. Atmos Environ 40(26):4960–4972

    Article  CAS  Google Scholar 

  • Mortimer KM, Neugebauer R, van der Laan M, Tager IB (2005) An application of model-fitting procedures for marginal structural models. Am J Epidemiol 162(4):382–388

    Article  Google Scholar 

  • NCRP (1997) Deposition, retention and dosimetry of inhaled radioactive substances, NCRP report no. 125. National Council on Radiation Protection and Measurements, Bethesda

    Google Scholar 

  • Nel AE, Diaz-Sanchez D, Li N (2001) The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Curr Opin Pulm Med 7:20–26

    Article  CAS  Google Scholar 

  • NRC (1991) Human exposure assessment for airborne pollutants: advances and opportunities. National Research Council, National Academy Press, Washington, DC

    Google Scholar 

  • NRC (1998) Research priorities for airborne particulate matter. I. Immediate priorities and a long-range research portfolio. National Research Council, National Academy Press, Washington, DC

    Google Scholar 

  • NRC (2004a) Air quality management in the United States. National Research Council, National Academy Press, Washington, DC

    Google Scholar 

  • NRC (2004b) Research priorities for airborne particulate matter: IV. Continuing research progress. National Research Council, National Academy Press, Washington, DC, pp 95–98

    Google Scholar 

  • O’Neill MS, Hajat S, Zanobetti A, Ramirez-Aguilar M, Schwartz J (2005a) Impact of control for air pollution and respiratory epidemics on the estimated associations of temperature and daily mortality. Int J Biometeorol 50(2):121–129

    Article  Google Scholar 

  • O’Neill MS, Veves A, Zanobetti A, Sarnat JA, Gold DR, Economides PA, Horton ES, Schwartz J (2005b) Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. Circulation 111(22):2913–2920

    Article  Google Scholar 

  • O’Neill MS, Veves A, Sarnat JA, Zanobetti A, Gold DR, Economides PA, Horton ES, Schwartz J (2007) Air pollution and inflammation in type 2 diabetes: a mechanism for susceptibility. Occup Environ Med 64:373–379

    Article  CAS  Google Scholar 

  • Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Internal Med 267:89–105

    Article  CAS  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  CAS  Google Scholar 

  • Oberdörster G, Elder A, Rinderknecht A (2009) Nanoparticles and the brain: cause for concern? J Nanosci Nanotechnol 9(8):4996–5007

    Article  CAS  Google Scholar 

  • O’Neill MS, Jerrett M, Kawachi I, Levy JI, Cohen AJ, Gouveia N, Wilkinson P, Fletcher T, Cifuentes L, Schwartz J (2003) Health, wealth, and air pollution: advancing theory and methods. Environ Health Perspect 111(16):1861–1870

    Article  Google Scholar 

  • Ostro B, Broadwin R, Green S, Feng W, Lipsett M (2006) Fine particulate air pollution and mortality in nine California counties: results from CALFINE. Environ Health Perspect 114:29–33

    Article  Google Scholar 

  • Özkaynak H, Frey HC, Burke J, Pinder RW (2009) Analysis of coupled model uncertainties in source-to-dose modeling of human exposures to ambient air pollution: a PM2.5 case study. Atmos Environ 43:1641–1649

    Article  CAS  Google Scholar 

  • Patel MM, Chillrud SN, Hoepner L, Reyes A, Garfinkel R, Perera FP, Miller RL (2009) Effects of ambient nickel, vanadium, and zinc on wheeze and cough in early childhood. J Allergy Clin Immunol 123:S172

    Article  Google Scholar 

  • Pearl J (1998) Why there is no statistical test for confounding, why many think there is, and why they are almost right. Tech Report R-256. Los Angeles, CA, USA. http://preprints.stat.ucla.edu/233/233.pdf. Accessed 19 Jul 2011.

  • Pearl J (2009) Causality: models, reasoning, and inference, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Peel JL, Klein M, Flanders WD, Mulholland JA, Tolbert PE (2010) Impact of improved air quality during the 1996 Summer Olympic Games in Atlanta on multiple cardiovascular and respiratory outcomes. Res Rep Health Eff Inst 148:3–23

    CAS  Google Scholar 

  • Pekkanen J, Brunner EJ, Anderson HR, Tiittanen P, Atkinson RW (2000) Daily concentrations of air pollution and plasma fibrinogen in London. Occup Environ Med 57:818–822

    Article  CAS  Google Scholar 

  • Pekkanen J, Peters A, Hoek G, Tiittanen P, Brunekreef B, de Hartog J, Heinrich J, Ibald-Mulli A, Kreyling WG, Lanki T, Timonen KL, Vanninen E (2002) Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) study. Circulation 106:933–938

    Article  Google Scholar 

  • Peltier RE, Lippmann M (2010) Residual oil combustion: 2. distribution of airborne nickel and vanadium within New York City. J Expo Sci Environ Epidemiol 20:342–350

    Article  CAS  Google Scholar 

  • Perera FP, Tang W-y, Herbstman J, Tang D, Levin L, Miller RL, Ho S (2009) Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS ONE 4(2):e4488. doi:10.1371/journal.pone.0004488

    Article  CAS  Google Scholar 

  • Peters A, Dockery DW, Heinrich J, Wichmann HE (1997) Short-term effects of particulate air pollution on respiratory morbidity in asthmatic children. Eur Respir J 10:872–879

    CAS  Google Scholar 

  • Peters A, Liu E, Verrier RL, Schwartz J, Gold DR, Mittleman M, Baliff J, Oh JA, Allen G, Monahan K, Dockery DW (2000) Air pollution and incidence of cardiac arrhythmia. Epidemiology 11:11–17

    Article  CAS  Google Scholar 

  • Peters A, Dockery DW, Muller JE, Mittleman MA (2001) Increased particulate air pollution and the triggering of myocardial infarction. Circulation 103:2810–2815

    CAS  Google Scholar 

  • Phalen RF, Méndez LB (2009) Dosimetry considerations for animal aerosol inhalation studies. Biomarkers 14(S1):63–66

    Article  CAS  Google Scholar 

  • Phalen RF, Oldham MJ, Wolff RK (2008) The relevance of animal models for aerosol studies. J Aerosol Med Pulm Drug Deliv 21:113–124

    Article  Google Scholar 

  • Phalen RF, Mendez LB, Oldham MJ (2010) New developments in aerosol dosimetry. Inhal Toxicol 22(S2):6–14

    Article  CAS  Google Scholar 

  • Pope CA 3rd (1989) Respiratory disease associated with community air pollution and a steel mill, Utah Valley. Am J Public Health 79:623–628

    Article  Google Scholar 

  • Pope CA 3rd (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108(suppl 4):713–723

    Article  CAS  Google Scholar 

  • Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742

    CAS  Google Scholar 

  • Pope CA III, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ (2004) Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109:71–77

    Article  Google Scholar 

  • Pope CA 3rd, Muhlestein JB, May HT, Renlund DG, Anderson JL, Horne BD (2006) Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation 114:2443–2448

    Article  CAS  Google Scholar 

  • Pope CA 3rd, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360(4):376–386

    Article  CAS  Google Scholar 

  • Pun BK, Wu S-Y, Seigneur C, Seinfeld JH, Griffin RJ, Pandis SN (2003) Uncertainties in modeling secondary organic aerosol: three-dimensional modeling studies in Nashville/western Tennessee. Environ Sci Technol 37(16):3647–3661

    Article  CAS  Google Scholar 

  • Rhoden CR, Wellenius GA, Ghelfi E, Lawrence J, Gonzalez-Flecha B (2005) PM-induced cardiac oxidative stress and dysfunction are mediated by autonomic stimulation. Biochim Biophys Acta 1725:305–313

    Article  CAS  Google Scholar 

  • Riediker M, Devlin RB, Griggs TR, Herbst MC, Bromberg PA, Williams RW, Cascio WE (2004) Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions. Particle Fibre Technol 1:2. http://www.particleandfibretoxicology.com/content/1/1/2

  • Robins JM (2001) Data, design, and background knowledge in etiologic inference. Epidemiology 12:313–320

    Article  CAS  Google Scholar 

  • Robins JM, Hernan MA, Brumback B (2000) Marginal structural models and causal inference in epidemiology. Epidemiology 11:550–560

    Article  CAS  Google Scholar 

  • Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315(5816):1259–1262

    Article  CAS  Google Scholar 

  • Routledge HC, Ayres JG, Townend JN (2003) Why cardiologists should be interested in air pollution. Heart 89:1383–1388

    Article  CAS  Google Scholar 

  • Russell AG (2008) EPA Supersites Program-related emissions-based particulate matter modeling: initial applications and advances. J Air Waste Manage Assoc 58:289–302

    Article  CAS  Google Scholar 

  • Russell AG, Brunekreef B (2009) A focus on particulate matter and health. Environ Sci Technol 43:4620–4625

    Article  CAS  Google Scholar 

  • Saldiva PHN, Clarke RW, Coull BA, Stearns RC, Lawrence J, Krishna Murthy GG, Diaz E, Koutrakis P, Suh H, Tsuda A, Godleski JJ (2002) Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am J Respir Crit Care Med 165:1610–1617

    Article  Google Scholar 

  • Samet JM (2007) Traffic, air pollution, and health. Inhal Toxicol 19:1021–1027

    Article  CAS  Google Scholar 

  • Samet J, Krewski D (2007) Health effects associated with exposure to ambient air pollution. J Toxicol Environ Health, Part A 70(3):227–242

    Article  CAS  Google Scholar 

  • Sarnat JA, Marmur A, Klein M, Kim E, Russell AG, Sarnat SE, Mulholland JA, Hopke PK, Tolbert PE (2008) Fine particle sources and cardiorespiratory morbidity: an application of chemical mass balance and factor analytical source-apportionment methods. Environ Health Perspect 116(4):459–466

    Google Scholar 

  • Scheuch G, Kohlhäufl M, Möller W, Brand P, Meyer T, Haussinger K, Sommerer K, Heyder J (2008) Particle clearance from the airways of subjects with bronchial hyperresponsiveness and with chronic obstructive pulmonary disease. Exp Lung Res 34:531–549

    Article  CAS  Google Scholar 

  • Schwartz J, Litonjua A, Suh H, Verrier M, Zanobetti A, Syring M, Nearing B, Verrier R, Stone P, MacCallum G, Speizer FE, Gold DR (2005) Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax 60:455–461

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113(8):947–955

    Article  Google Scholar 

  • Slama R, Darrow L, Parker J, Woodruff TJ, Strickland M, Nieuwenhuijsen M, Glinianaia S, Hoggatt KJ, Kannan S, Hurley F, Kalinka J, Sram R, Brauer M, Wilhelm M, Heinrich J, Ritz B (2008) Meeting report: atmospheric pollution and human reproduction. Environ Health Perspect 116:791–798. doi:10.1289/ehp.11074

    Article  Google Scholar 

  • Solomon PA, Costa DL (2010) Ambient tropospheric particles. In: Gehr P, Rothen-Muhlfeld B, Blank F (eds) Particle–lung interactions, 2nd edn. Informa Healthcare, New York, pp 17–37

    Google Scholar 

  • Solomon PA, Hopke PK (2008a) Special issue supporting key scientific and policy- and health-relevant findings from EPA’s particulate matter supersites program and related studies: an integration and synthesis of results. J Air Waste Manage Assoc 58(2):137–139

    Article  Google Scholar 

  • Solomon PA, Hopke PK (2008b) Introduction: EPA’s Particulate Matter Supersites Program: an integrated synthesis of findings and policy- and health-relevant insights. J Air Waste Manage Assoc 58(13):S-1–S-2

    Google Scholar 

  • Solomon PA, Sioutas C (2008) Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: a synthesis of findings from EPA’s Particulate Matter Supersites Program and related studies. J Air Waste Manage Assoc 58:164–195

    Article  CAS  Google Scholar 

  • Solomon PA, Tolocka MP, Norris G, Landis M (2001) Chemical analysis methods for atmospheric aerosol components. In: Baron P, Willeke K (eds) Aerosol measurement: principles, techniques, and application, 2nd edn. Wiley, New York, pp 261–293

    Google Scholar 

  • Solomon PA, Hopke PK, Froines J, Scheffe R (2008) Key scientific findings and policy- and health-relevant insights from the U.S. Environmental Protection Agency’s Particulate Matter Supersites Program and related studies: an integration and synthesis of results. J Air Waste Manage Assoc 58(13):S3–S92

    Article  CAS  Google Scholar 

  • Solomon PA, Gehr P, Bennett D, Phalen R, Méndez LB, Rothen-Rutishauser B, Clift M, Brandenberger C, Mühlfeld C (2011) Macroscopic to microscopic scales of particle dosimetry: from source to fate in the body. Air Quality, Atmosphere, and Health. Submitted for publication September.

  • Sorensen M, Schins RPF, Hertel O, Loft S (2005) Transition metals in personal samples of PM2.5 and oxidative stress in human volunteers. Cancer Epidemiol Biomarkers Prevent 14:1340–1343

    Article  CAS  Google Scholar 

  • Stafoggia M, Schwartz J, Forastiere F, Perucci CA (2008) Does temperature modify the association between air pollution and mortality? A multicity case-crossover analysis in Italy. Am J Epidemiol 167(12):1476–1485

    Article  CAS  Google Scholar 

  • Stanier CO, Khlystov AY, Pandis SN (2004a) Nucleation events during the Pittsburgh Air Quality Study: description and relation to key meteorological, gas phase, and aerosol parameters. Aerosol Sci Technol 38(1):253–264

    Article  CAS  Google Scholar 

  • Stanier CO, Khlystov AY, Pandis SN (2004b) Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study. Atmos Environ 38:3275–3284

    Article  CAS  Google Scholar 

  • Subbarao P, Becker A, Brook JR, Daley D, Mandhane PJ, Miller GE, Turvey SE, Sears MR (2009) Epidemiology of asthma: risk factors for development. Expert Rev Clin Immunol 5(1):77–95

    Article  Google Scholar 

  • Sullivan RC, Prather KA (2005) Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation. Anal Chem 77:3861–3886

    Article  CAS  Google Scholar 

  • Thurston GD, Ito K, Mar T, Christensen WF, Eatough DJ, Henry RC, Kim E, Laden F, Lall R, Larson TV, Liu H, Neas L, Pinto J, Stolzel M, Suh H, Hopke PK (2005) Workgroup report: workshop on source apportionment of particulate matter health effects—intercomparison of results and implications. Environ Health Perspect 113:1768–1774

    Article  Google Scholar 

  • Tonne C, Beevers S, Armstrong B, Kelly F, Wilkinson P (2008) Air pollution and mortality benefits of the London Congestion Charge: spatial and socioeconomic inequalities. Occup Environ Med 65(9):620–627

    Article  CAS  Google Scholar 

  • Traviss N, Thelen BA, Ingalls JK, Treadwell MD (2011) Evaluation of biodiesel’s impact on real world occupational and environmental particulate matter exposures at a municipal facility in Keene, NH. Air Quality Atmos Health. doi:10.1007/s11869-011-0141-8

  • Turner JR, Allen DT (2008) Transport of atmospheric fine particulate matter: part 2—findings from recent field programs on the intraurban variability in fine particulate matter. J Air Waste Manage Assoc 58:196–215

    Article  CAS  Google Scholar 

  • Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610

    CAS  Google Scholar 

  • Tzamkiozis T, Stoeger T, Cheung K, Ntziachristos L, Sioutas C, Samaras Z (2010) Monitoring the inflammatory potential of exhaust particles from passenger cars in mice. Inhal Toxicol 22(S2):59–69

    Article  CAS  Google Scholar 

  • Urch B, Brook JR, Wasserstein D, Brook RD, Rajagopalan S, Corey P, Silverman F (2004) Relative contributions of PM2.5 chemical constituents to acute arterial vasoconstriction in humans. Inhal Toxicol 16:345–352

    Article  CAS  Google Scholar 

  • van Erp AM, Cohen AJ (2009) HEI’s research program on the impact of actions to improve air quality: interim evaluation and future directions. Communication 14. Health Effects Institute, Boston

    Google Scholar 

  • van Erp AM, O’Keefe R, Cohen AJ, Warren J (2008) Evaluating the effectiveness of air quality interventions. J Toxicol Environ Health A 71(9–10):583–587

    Article  CAS  Google Scholar 

  • van Erp AM, Kelly FJ, Demerjian KL, Pope CA III, Cohen AJ (2011) Progress in research to assess the effectiveness of air quality interventions towards improving public health. Air Qual Atmos Health. doi:10.1007/s11869-010-0127-y

  • Van Winkle LS, Chan JKW, Anderson DS, Kumfer BM, Kennedy IM, Wexler AS, Wallis C, Abid AD, Sutherland KM, Fanucchi MV (2010) Age specific responses to acute inhalation of diffusion flame soot particles: cellular injury and the airway antioxidant response. Inhal Toxicol 22(S2):70–83

    Article  CAS  Google Scholar 

  • Verma V, Ning Z, Cho AK, Schauer JJ, Shafer MM, Sioutas C (2009) Redox activity of urban quasi-ultrafine particles from primary and secondary sources. Atmos Environ 43(40):6360–6368

    Article  CAS  Google Scholar 

  • Watson JG, Zhu T, Chow JC, Engelbrecht J, Fujita EM, Wilson WE (2002) Receptor modeling application framework for particle source apportionment. Chemosphere 49(9):1093–1136

    Article  CAS  Google Scholar 

  • Watson JG, Chen L-WA, Chow JC, Doraiswamy P, Lowenthal DH (2008) Source apportionment: findings from the U.S. Supersites Program. J Air Waste Manage Assoc 58:265–288

    Article  CAS  Google Scholar 

  • Wellenius GA, Coull BA, Godleski JJ, Koutrakis P, Okabe K, Savage ST, Lawrence JE, Krishna Murthy GG, Verrier RL (2003) Inhalation of concentrated ambient air particles exacerbates myocardial ischemia in conscious dogs. Environ Health Perspect 111:402–408

    Article  CAS  Google Scholar 

  • Wexler A, Johnston M (2008) What have we learned from highly time-resolved measurements during EPA’s Supersites Program and related studies? J Air Waste Manage Assoc 58:303–319

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2005) WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. WHO, Geneva. http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf. Accessed 19 Jul 2011.

  • Yu O, Sheppard L, Lumley T, Koenig JQ, Shapiro GG (2000) Effects of ambient air pollution on symptoms of asthma in Seattle-area children enrolled in the CAMP study. Environ Health Perspect 108(12):1209–1214

    Article  CAS  Google Scholar 

  • Zanobetti A, Schwartz J (2001) Are diabetics more susceptible to the health effects of airborne particles? Am J Respir Crit Care Med 164:831–833

    CAS  Google Scholar 

  • Zanobetti A, Schwartz J (2002) Cardiovascular damage by airborne particles: are diabetics more susceptible? Epidemiology 13(5):588–592

    Article  Google Scholar 

  • Zheng W, Zhao Q (2001) Iron overload following manganese exposure in cultured neuronal, but not neuroglial cells. Brain Research 897(1–2):175–179

    Article  CAS  Google Scholar 

  • Zhu Y, Hinds WC, Shen S, Sioutas C (2004) Seasonal trends of concentration and size distribution of ultrafine particles near major highways in Los Angeles. Aerosol Sci Technol 38(S1):5–13

    CAS  Google Scholar 

  • Zou B, Wilson JG, Zhan FB, Zeng Y (2009) Air pollution exposure assessment methods utilized in epidemiological studies. J Environ Monit 11(3):475–490

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The 2010 Air Pollution and Health Conference, sponsored by the American Association for Aerosol Research (AAAR), would not have been possible without the generous support of a number of organizations as given at the Conference website (http://aaar.2010specialty.org). AAAR members along with AAAR staff also were pivotal in making the Conference a huge success. Special thanks are given to Dr. Maria Costantini, Conference co-chair, and others on the Conference committees listed at http://aaar.2010specialty.org/. Much appreciated are reviews of the manuscript by Dr. Jonathan M. Samet of the University of Southern California. Authors on this paper volunteered their time to produce this informative summary of the Conference to help ensure dissemination of the findings to those who could not attend. The US Environmental Protection Agency through its Office of Research and Development managed the development of this journal article. It has been subjected to the Agency’s administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Solomon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3360 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomon, P.A., Costantini, M., Grahame, T.J. et al. Air pollution and health: bridging the gap from sources to health outcomes: conference summary. Air Qual Atmos Health 5, 9–62 (2012). https://doi.org/10.1007/s11869-011-0161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-011-0161-4

Keywords

Navigation