1 Introduction

Pseudo-differential operators, first developed by Kohn and Nirenberg [8] in 1965 and then is used by Hörmander [7] and others for problems in partial differential equations. Weyl transforms which are a class of pseudo-differential operators have applications in Quantization due to Hermann Weyl [18]. In [21] Weyl transforms on compact Lie groups are introduced and the heat kernels of the Laplacian on the compact Lie group is obtained. In this paper, we look at pseudo-differential operators on compact and Hausdorff groups with \(L^2\) symbols. The \(L^p,\) \(1\le p\le \infty \) conditions on the symbols allowing singularities are ideal for a broad spectrum of disciplines ranging from functional analysis to operator algebras to quantization. An analogue of the results in this paper is studied for the compact Lie group \(\mathbb S ^{n-1}\), i.e., the unit sphere with center at the origin in [5]. Pseudo-differential operators on the unit sphere are studied extensively in [111, 13, 14, 16, 17, 22].

The aim of this paper is to give a characterization of trace class pseudo-differential operators on compact and Hausdorff groups. We give a formula for the trace of pseudo-differential operators in the trace class. The main technique is to obtain a formula for the symbol of the product of two pseudo-differential operators on a compact and Hausdorff group.

In Sect. 2, we give a brief recall of Hilbert-Schmidt and trace class operators. We define pseudo-differential operators on compact and Hausdorff groups by using the space of all unitary and irreducible representations in Sect. 3. A product formula for pseudo-differential operators is given. Then we give a characterization of trace class pseudo-differential operators.

2 Hilbert-Schmidt and trace class operators

Let \(\mathcal{H}\) be a complex and separable Hilbert space in which the inner product and norm are denoted by \((,)_{\mathcal{H}}\) and \(\Vert \ \Vert _{\mathcal{H}}\). Let \(A:\mathcal{H}\rightarrow \mathcal{H}\) be a compact operator. Then the absolute value of A denoted by \(|A|\) is defined by

$$\begin{aligned} |A|=(A^*A)^{1/2}. \end{aligned}$$

The operator \(|A|\) is compact and positive. So, by the spectral theorem, there exists an orthonormal basis \(\{\varphi _j\}_{j=1}^{\infty }\) of eigenvectors of \(|A|\) with the corresponding eigenvalues \(\{s_j\}_{j=1}^\infty \) of real numbers. The operator \(A\) is said to be in the Hilbert-Schmidt class \(S_2\) if

$$\begin{aligned} \sum _{j=1}^{\infty }s_j^2<\infty , \end{aligned}$$

and we define its Hilbert-Schmidt norm by

$$\begin{aligned} \Vert A\Vert _{HS}=\left( \sum _{j=1}^{\infty }s_j^2\right) ^{1/2}. \end{aligned}$$

The operator \(A\) is said to be in the trace class \(S_1\) if

$$\begin{aligned} \sum _{j=1}^\infty s_j<\infty , \end{aligned}$$

and we define its trace by

$$\begin{aligned} tr(A)=\sum _{j=1}^\infty s_j. \end{aligned}$$

We have the following theorem which shows that the Hilbert-Schmidt norm and trace is independent of the choice of orthonormal basis for \(\mathcal{H}\), for details see [12] by Reed and Simon.

Theorem 2.1

Let \(A:\mathcal{H}\rightarrow \mathcal{H}\) be a bounded operator. Then

  • \(A\in S_2\) if and only if there exists an orthonormal basis \(\{\varphi _j\}_{j=1}^\infty \) for \(\mathcal{H}\) such that

    $$\begin{aligned} \Vert A\Vert _{HS}=\left( \sum _{j=1}^{\infty }\Vert A\varphi _j\Vert _{\mathcal{H}}^2\right) ^{1/2}<\infty . \end{aligned}$$
  • \(A\in S_1\) if and only if there exists an orthonormal basis \(\{\varphi _j\}_{j=1}^\infty \) for \(\mathcal{H}\) such that

    $$\begin{aligned} tr(A)=\sum _{j=1}^{\infty }(A\varphi _j,\varphi _j)_{\mathcal{H}}<\infty . \end{aligned}$$

The following theorem will be useful in the next section.

Theorem 2.2

Let \(A:\mathcal{H}\rightarrow \mathcal{H}\) be a bounded operator. Then \(A\in S_1\) if and only if \(A=BC\), where \(B\) and \(C\) are in \(S_2\).

3 Pseudo-differential operators on compact and Hausdorff groups

Let \(G\) be a locally compact and Hausdorff group. Let \(\mathcal{H}\) be a separable and complex Hilbert space. We denote the group of all unitary operators by \(U(\mathcal{H})\). A group homomorphism \(\pi :G\rightarrow U(\mathcal{H})\) is said to be a unitary representation of \(G\) on \(\mathcal{H}\) if it is strongly continuous, i.e., the mapping

$$\begin{aligned} g\mapsto \pi (g)h \end{aligned}$$

is a continuous mapping for all \(h\in \mathcal{H}\). The dimension of \(\mathcal{H}\) is knows as the degree or the dimension of the representation \(\pi \).

A closed subspace M of \(\mathcal{H}\) is said to be invariant with respect to the unitary representation \(\pi :G\rightarrow U(\mathcal{H})\) if

$$\begin{aligned} \pi (g)M\subseteq M,\quad \forall g\in G. \end{aligned}$$

A unitary representation \(\pi :G\rightarrow U(\mathcal{H})\) is called irreducible if it has only the trivial invariant subspaces, i.e., \(\{0\}\) and \(\mathcal{H}.\) The following theorem is crucial in defining pseudo-differential operators on compact Hausdorff groups. For its proof see [6, 20].

Theorem 3.1

Let \(G\) be a compact and Hausdorff group. Then any irreducible and unitary representation of G on a complex and separable Hilbert space is finite dimensional.

Let \(\mathbb{G }\) be a compact and Hausdorff group with the left (and right) Haar measure is denoted by \(\mu .\) Let \(\hat{\mathbb{G }}\) be the set of all irreducible and unitary representations of \(\mathbb{G }\). Let \(\pi \in \hat{\mathbb{G }}\). Then \(\pi \) is finite dimensional. Let \(a_\pi \) be the degree of \(\pi \) and let \({\mathcal{H}_\pi }\) be its representation space. We denote the inner product and the norm in \({\mathcal{H}_\pi }\) by \((\ ,\ )_{{\mathcal{H}_\pi }}\) and \(\Vert \ \Vert _{{\mathcal{H}_\pi }}\) respectively. Let \(\{\psi _1,\psi _2,\dots ,\psi _{a_\pi }\}\) be an orthonormal basis for \({\mathcal{H}_\pi }\). Then for all \(j,k=1,2,\dots ,\) we define \(\pi _{jk}\) by

$$\begin{aligned} \pi _{jk}(g)=\sqrt{a_\pi }\left( \pi (g)\psi _k,\psi _j\right) _{{\mathcal{H}_\pi }} \end{aligned}$$

Theorem 3.2

(Peter-Weyl Theorem) \(\{\pi _{jk}:\ \pi \in \hat{\mathbb{G }},\ j,k=1,2,\dots ,a_\pi \}\) forms an orthonormal basis for \(L^2(\mathbb{G })\).

By Peter-Weyl theorem, every \(f\in L^2(\mathbb{G })\) can be expressed as

$$\begin{aligned} f=\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\left( f,\pi _{jk}\right) _{L^2(\mathbb{G })}\pi _{jk}. \end{aligned}$$

have the following Plancheral theorem.

Theorem 3.3

For all \(f\in L^2(\mathbb{G })\),

$$\begin{aligned} \Vert f\Vert _{L^2(\mathbb{G })}=\left\{ \sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }|\left( f,\pi _{jk}\right) _{L^2(\mathbb{G })}|^2\right\} ^{1/2}. \end{aligned}$$

Let \(\sigma \) be a measurable function on \(\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }\). For all measurable functions \(f\) on \(\mathbb{G }\), we define \(T_\sigma f\) on \(\mathbb{G }\) formally by

$$\begin{aligned} \left( T_\sigma f\right) (g)=\sum _{\pi \in \hat{\mathbb{G }}} \sum _{j,k=1}^{a_\pi }\sigma (g,\pi ,j,k)\left( f,\pi _{jk}\right) _{L^2(\mathbb{G })}\pi _{jk}(g),\quad g\in \mathbb{G }. \end{aligned}$$

\(T_\sigma \) is called the pseudo-differential operator on \(\mathbb{G }\) corresponding to the symbol \(\sigma \). For pseudo-differential operators on Euclidean spaces see for example [15, 19].

Let \(L^2(\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N })\) be the space all measurable functions \(\sigma \) on \({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}}\) for which

$$\begin{aligned} \Vert \sigma \Vert _{L^2({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}})}=\left\{ \sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\int \limits _{\mathbb{G }}\left| \sigma (g,\pi ,j,k)\pi _{jk}(g)\right| ^2\,d\mu (g)\right\} ^{1/2}<\infty . \end{aligned}$$

We have the following result on the \(L^2\)-boundedness of pseudo-differential operators on \(\mathbb{G }\).

Theorem 3.4

Let \(\sigma \in L^2({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}}).\) Then \(T_\sigma :L^2(\mathbb{G })\rightarrow L^2(\mathbb{G })\) is a bounded operator and

$$\begin{aligned} \Vert T_\sigma \Vert _*\le \Vert \sigma \Vert _{L^2({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}})}, \end{aligned}$$

where \(\Vert \ \Vert _*\) is the norm in the \(C^*\)-algebra of all bounded linear operators from \(L^2(\mathbb{G })\) into \(L^2(\mathbb{G })\).

Proof

Let \(f\in L^2(\mathbb{G })\). By Minkowski’s inequality and the Schwarz inequality, we have

$$\begin{aligned}&\Vert T_\sigma f\Vert _{L^2(\mathbb{G })} \\&\quad = \left( \int \limits _\mathbb{G }|(T_\sigma f)(g)|^2\,d\mu (g)\right) ^{1/2}\\&\quad =\left( \int \limits _{\mathbb{G }}\left| \sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sigma (g,\pi ,j,k)\left( f,\pi _{jk}\right) _{L^2(\mathbb{G })}\pi _{jk}(g)\right| ^2\,d\mu (g)\right) ^{1/2}\\&\quad \le \sum _{\pi \in \hat{\mathbb{G }}}\left( \int \limits _{\mathbb{G }}\left| \sum _{j,k=1}^{a_\pi }\sigma (g,\pi ,j,k)\left( f,\pi _{jk}\right) _{L^2(\mathbb{G })}\pi _{jk}(g)\right| ^2\,d\mu (g)\right) ^{1/2}\\&\quad \!\le \!\sum _{\pi \in \hat{\mathbb{G }}}\left( \int \limits _{\mathbb{G }} \left( \sum _{j,k=1}^{a_\pi }\left| \left( f,\pi _{jk}\right) _{L^2(\mathbb{G })}\right| ^2\right) \left( \sum _{j,k=1}^{a_\pi }\left| \sigma (g,\pi ,j,k)\pi _{jk}(g)\right| ^2\right) \,d\mu (g)\right) ^{1/2}\\&\quad =\sum _{\pi \in \hat{\mathbb{G }}} \left( \sum _{j,k=1}^{a_\pi }\left| \left( f,\pi _{jk}\right) _{L^2(\mathbb{G })}\right| ^2\right) ^{1/2}\left( \int \limits _{\mathbb{G }}\sum _{j,k=1}^{a_\pi }\left| \sigma (g,\pi ,j,k)\pi _{jk}(g)\right| ^2\,d\mu (g)\right) ^{1/2}\\ \!&\quad \!\le \!\left( \,\sum _{\pi \in \hat{\mathbb{G }}} \sum _{j,k=1}^{a_\pi }\left| \left( \!f,\pi _{jk}\right) _{L^2(\mathbb{G })}\right| ^2\right) ^{1/2}\left( \sum _{\pi \in \hat{\mathbb{G }}}\int \limits _{\mathbb{G }}\sum _{j,k=1}^{a_\pi }\left| \sigma (g,\pi ,j,k)\pi _{jk}(g)\right| ^2\,d\mu (g)\right) ^{1/2}\\&\quad =\Vert f\Vert _{L^2(\mathbb{G })}\Vert \sigma \Vert _{L^2({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}})}. \end{aligned}$$

\(\square \)

Now we are ready to give a necessary and sufficient condition on \(\sigma \) to guarantee Hilbert-Schmidt properties of \(T_\sigma \).

Theorem 3.5

Let \(\sigma \) be a measurable function on \({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}}\). Then \(T_\sigma \) is a Hilbert-Schmidt operator if and only if \(\sigma \in L^2({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}})\) and

$$\begin{aligned} \Vert T_\sigma \Vert _{HS}=\Vert \sigma \Vert _{L^{2}({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}})}. \end{aligned}$$

Proof

For \(\tilde{\pi }\in \hat{\mathbb{G }}\) and \(j_0,k_0=1,2,\dots ,a_{\tilde{\pi }}\), we have

$$\begin{aligned} \left( T_\sigma \tilde{\pi }_{j_0k_0}\right) (g)&= \sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=0}^{a_\pi }\sigma (g,\pi ,j,k)\left( \tilde{\pi }_{j_0k_0},\pi _{jk}\right) _{L^2(\mathbb{G })}\pi _{jk}(g)\\&= \sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=0}^{a_\pi }\sigma (g,\pi ,j,k)\left( \tilde{\pi }_{j_0k_0},\pi _{jk}\right) _{L^2(\mathbb{G })}\pi _{jk}(g)\\&= \sigma (g,\tilde{\pi },k_0,j_0)\tilde{\pi }_{j_0k_0}(g),\quad g\in \mathbb{G }. \end{aligned}$$

Hence

$$\begin{aligned}&\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\Vert T_\sigma \pi _{jk}\Vert _{L^2(\mathbb{G })}^2\\&\quad =\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\left( \,\int \limits _{\mathbb{G }}|T_\sigma \pi _{jk}(g)|^2\,d\mu (g)\right) \\&\quad =\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\int \limits _{\mathbb{G }}|\sigma (g,\pi ,j,k)\pi _{jk}(g)|^2\,d\mu (g)\\&\quad =\Vert \sigma \Vert _{L^2({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}})}^2. \end{aligned}$$

and the proof is complete.\(\square \)

Let \(\sigma \) and \(\tau \) measurable functions on \({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}}\). Then we define \(\sigma \circledast \tau \) by

$$\begin{aligned}&\sigma \circledast \tau (g,\xi ,l,m)\nonumber \\&\quad =\left( \int \limits _{\mathbb{G }}\tau (w,\xi ,l,m)\xi _{lm}(w)\!\sum _{\pi \in \hat{\mathbb{G }}}\!\sum _{j,k=1}^{a_\pi } \sigma (g,\pi ,j,k)\overline{\pi _{jk}(w)}\pi _{jk}(g)\,d\mu (w)\!\right) (\xi _{lm}(g))^{-1}\nonumber \\ \end{aligned}$$
(3.1)

for all \(g\in \mathbb{G }\), \(\xi \in \hat{\mathbb{G }}\) and \(l,m=1,\dots ,a_\xi \). The following theorem shows that that the composition of two pseudo-differential operators on \(\mathbb{G }\) is again a pseudo-differential operator.

Theorem 3.6

Let \(\sigma \) and \(\tau \) be measurable functions on \({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}}\). Then

$$\begin{aligned} T_\sigma T_\tau =T_\lambda \end{aligned}$$

where \(\lambda =\sigma \circledast \tau .\)

Proof

Let \(f\) be in \(L^2(\mathbb{G })\). Then for all \(g\in \mathbb{G }\)

$$\begin{aligned}&\left( T_\sigma T_\tau f\right) (g)\nonumber \\&\quad =\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sigma (g,\pi ,j,k)\left( T_\tau f,\pi _{jk}\right) _{L^2(\mathbb{G })}\pi _{jk}(g)\nonumber \\&\quad =\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sigma (g,\pi ,j,k)\left( \int \limits _{\mathbb{G }}\left( T_\tau f\right) (w)\overline{\pi _{jk}(w)}\,d\mu (w)\right) \pi _{jk}(g)\nonumber \\&\quad =\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sigma (g,\pi ,j,k)\left( \int \limits _{\mathbb{G }}\sum _{\xi \in \hat{\mathbb{G }}} \sum _{l,m=1}^{a_\xi }\tau (w,\xi ,l,m)\left( f,\xi _{lm}\right) _{L^2(\mathbb{G })}\xi _{lm}(w)\overline{\pi _{jk}(w)}\,d\mu (w)\right) \pi _{jk}(g)\nonumber \\&\quad =\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sigma (g,\pi ,j,k)\left( \sum _{\xi \in \hat{\mathbb{G }}} \sum _{l,m=1}^{a_\xi }\left( f,\xi _{lm}\right) _{L^2(\mathbb{G })}\int \limits _{\mathbb{G }}\tau (w,\xi ,l,m)\xi _{lm}(w)\overline{\pi _{jk}(w)}\,d\mu (w)\right) \pi _{jk}(g)\nonumber \\&\quad =\sum _{\xi \in \hat{\mathbb{G }}} \sum _{l,m=1}^{a_\xi }\left( \int \limits _{\mathbb{G }}\tau (w,\xi ,l,m)\xi _{lm}(w)\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sigma (g,\pi ,j,k)\overline{\pi _{jk}(w)}\pi _{jk}(g)\,d\mu (w)\right) \nonumber \\&\qquad \times (\xi _{lm}(g))^{-1}\left( f,\xi _{lm}\right) _{L^2(\mathbb{G })}\xi _{lm}(g)\nonumber \\&\quad =\sum _{\xi \in \hat{\mathbb{G }}} \sum _{l,m=1}^{a_\xi }\lambda (g,\xi ,l,m)\left( f,\xi _{lm}\right) _{L^2(\mathbb{G })}\xi _{lm}(g), \end{aligned}$$
(3.2)

where \(\lambda =\sigma \circledast \tau .\) Thus,

$$\begin{aligned} T_\lambda =T_\sigma T_\tau \end{aligned}$$

\(\square \)

Now we are ready to give a characterization of trace class pseudo-differential operators on \(\mathbb{G }\).

Theorem 3.7

Let \(\lambda \) be a measurable function in \({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}}\). Then \(T_\lambda \in S_1\) if and only if there exist symbols \(\sigma \) and \(\tau \) in \(L^2({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}})\) such that

$$\begin{aligned} \lambda =\sigma \circledast \tau , \end{aligned}$$

and

$$\begin{aligned} tr(T_\lambda )&= \sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\int \limits _\mathbb{G }\lambda (g,\pi ,j,k)|\pi _{jk}(g)|^2\,d\mu (g)\\ \!&= \!\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sum _{\xi \in \hat{\mathbb{G }}}\sum _{l,m=1}^{a_\xi } \left( \tau (\cdot ,\xi ,l,m)\xi _{lm},\pi _{jk}\right) _{L^2(\mathbb{G })} \left( \sigma (\cdot ,\pi ,j,k)\pi _{jk} ,\xi _{lm}\right) _{L^2(\mathbb{G })}\!. \end{aligned}$$

Proof

The first part of the theorem follows from Theorem 2.2, Theorem 3.5 and Theorem 3.6.Now we check the absolute convergence of the series

$$\begin{aligned} \sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sum _{\xi \in \hat{\mathbb{G }}}\sum _{l,m=1}^{a_\xi } \left( \tau (\cdot ,\xi ,l,m)\xi _{lm},\pi _{jk}\right) _{L^2(\mathbb{G })} \left( \sigma (\cdot ,\pi ,j,k)\pi _{jk} ,\xi _{lm}\right) _{L^2(\mathbb{G })} \end{aligned}$$

By the Schwarz inequality and Plancheral’s theorem,

$$\begin{aligned}&\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sum _{\xi \in \hat{\mathbb{G }}}\sum _{l,m=1}^{a_\xi } \left| \left( \tau (\cdot ,\xi ,l,m)\xi _{lm},\pi _{jk}\right) _{L^2(\mathbb{G })}\right| \left| \left( \sigma (\cdot ,\pi ,j,k)\pi _{jk} ,\xi _{lm}\right) _{L^2(\mathbb{G })}\right| \\&\quad \le \left\{ \sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sum _{\xi \in \hat{\mathbb{G }}}\sum _{l,m=1}^{a_\xi } \left| \left( \tau (\cdot ,\xi ,l,m)\xi _{lm},\pi _{jk}\right) _{L^2(\mathbb{G })}\right| ^2\right\} ^{1/2}\\&\left\{ \sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sum _{\xi \in \hat{\mathbb{G }}}\sum _{l,m=1}^{a_\xi } \left| \left( \sigma (\cdot ,\pi ,j,k)\pi _{jk} ,\xi _{lm}\right) _{L^2(\mathbb{G })}\right| ^2\right\} ^{1/2} \\&\quad =\left\{ \sum _{\xi \in \hat{\mathbb{G }}}\sum _{l,m=1}^{a_\xi } \int \limits _{\mathbb{G }}\left| \tau (g,\xi ,l,m)\xi _{lm}(g)\right| ^2\,d\mu (g)\right\} ^{1/2}\\&\left\{ \sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\xi } \int \limits _{\mathbb{G }}\left| \sigma (g,\pi ,j,k)\pi _{jk}(g)\right| ^2\,d\mu (g)\right\} ^{1/2} \\&\quad =\Vert \sigma \Vert _{L^2({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}})}\Vert \tau \Vert _{L^2({{\mathbb{G }\times \hat{\mathbb{G }}\times \mathbb{N }\times \mathbb{N }}})}<\infty . \end{aligned}$$

Since \(\bigcup _{\pi \in \hat{\mathbb{G }}}\{\pi _{jk}:\ j,k=1,2,\dots ,a_\pi \}\) forms an orthonormal basis for \(L^2(\mathbb{G })\), it follows that

$$\begin{aligned}&tr(T_\lambda )=\sum _{\xi \in \hat{\mathbb{G }}}\sum _{l,m=1}^{a_\xi }\left( T_\lambda \xi _{lm},\xi _{lm}\right) _{L^2(\mathbb{G })}\\&\quad =\sum _{\xi \in \hat{\mathbb{G }}}\sum _{l,m=1}^{a_\xi }\int \limits _{\mathbb{G }}\lambda (g,\xi ,l,m)\xi _{lm}(g)\overline{\xi _{lm}(g)}\,d\mu (g)\\ \!&\quad =\!\!\sum _{\xi \in \hat{\mathbb{G }}}\!\sum _{l,m=1}^{a_\xi }\int \limits _{\mathbb{G }} \left( \int \limits _{\mathbb{G }}\tau (w,\xi ,l,m)\xi _{lm}(w)\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi } \sigma (g,\!\pi \!,j,k)\overline{\pi _{jk}(w)}\pi _{jk}(g)\,d\mu (w)\!\right) \\&\qquad \times \overline{\xi _{lm}(g)}\,d\mu (g)\\&\quad =\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sum _{\xi \in \hat{\mathbb{G }}}\sum _{l,m=1}^{a_\xi }\int \limits _{\mathbb{G }} \tau (w,\xi ,l,m)\xi _{lm}(w)\overline{\pi _{jk}(w)}\,d\mu (w) \int \limits _{\mathbb{G }}\sigma (g,\pi ,j,k)\pi _{jk}(g)\\&\qquad \times \overline{\xi _{lm}(g)}\,d\mu (g)\\&\quad =\sum _{\pi \in \hat{\mathbb{G }}}\sum _{j,k=1}^{a_\pi }\sum _{\xi \in \hat{\mathbb{G }}}\sum _{l,m=1}^{a_\xi } \left( \tau (\cdot ,\xi ,l,m)\xi _{lm},\pi _{jk}\right) _{L^2(\mathbb{G })} \left( \sigma (\cdot ,\pi ,j,k)\pi _{jk} ,\xi _{lm}\right) _{L^2(\mathbb{G })}. \end{aligned}$$

\(\square \)

We can now look at the special case when \(\mathbb{G }=\mathbb{S }^1.\)

Example 3.8

Let \({\mathbb{S }^1}\) be the unit circle centered at the origin. For all \(n\in \mathbb{Z }\), we define \(\pi _n:\mathbb{S }^1\rightarrow U(1)\) by

$$\begin{aligned} \pi _n(\theta )=(2\pi )^{-1/2}e^{in\theta },\quad \theta \in [-\pi ,\pi ]. \end{aligned}$$

Then

$$\begin{aligned} \widehat{\mathbb{S }^1}=\{\pi _n:\ n\in \mathbb{Z }\}, \end{aligned}$$

and \(\widehat{\mathbb{S }}\simeq \mathbb{Z }.\) Hence for any symbol \(\sigma \) on \(\mathbb{S }^1\times \mathbb{Z }\) we can define pseudo-differential operator \(T_\sigma \) on \(L^2(\mathbb{S }^1)\) by

$$\begin{aligned} \left( T_{\sigma }f\right) (\theta )=\sum _{n\in \mathbb{Z }}\sigma (\theta ,n)(f,\pi _n)_{L^2(\mathbb{S }^1)}\pi _n(\theta ),\quad f\in L^2(\mathbb{S }^1),\ \theta \in [-\pi ,\pi ]. \end{aligned}$$

Hence,

$$\begin{aligned} \left( T_\sigma f\right) (\theta )=(2\pi )^{-1}\sum _{n\in \mathbb{Z }}\,\int \limits _{-\pi }^{\pi }e^{in(\theta -\varphi )}\sigma (n,\theta )f(\varphi )\,d\varphi . \end{aligned}$$