Skip to main content

Advertisement

Log in

Antibody Drug Conjugates in Bladder Cancer: Current Milestones and Future Perspectives

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion Statement

Over the last several years, the treatment landscape of urothelial carcinoma has witnessed an unprecedented expansion of therapeutic options including checkpoint inhibitors, tyrosine kinase inhibitors, and antibody drug conjugates (ADC). Early trial data has shown that ADCs are safer and potentially effective treatment options in advanced bladder cancer as well as in the early disease. In particular, enfortumab–vedotin (EV) has shown promising results with a recent cohort of a clinical trial demonstrating that EV is effective as neoadjuvant monotherapy as well as in combination with pembrolizumab in metastatic setting. Similar promising results have been shown by other classes of ADC in other trials including sacituzumab–govitecan (SG) and oportuzumab monatox (OM). ADCs are likely to become a mainstay treatment option in the urothelial carcinoma playbook as either a monotherapy or combination therapy. The cost of the drug presents a real challenge, but further trial data may justify the use of the drug as mainstay treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    Article  PubMed  Google Scholar 

  2. Mossanen M. The epidemiology of bladder cancer. Hematol Oncol Clin North Am. 2021;35(3):445–55.

    Article  PubMed  Google Scholar 

  3. Kaufman DS, Shipley WU, Feldman AS. Bladder cancer. Lancet. 2009;374(9685):239–49.

    Article  CAS  PubMed  Google Scholar 

  4. Cumberbatch MGK, et al. Epidemiology of bladder cancer: a systematic review and contemporary update of risk factors in 2018. Eur Urol. 2018;74(6):784–95.

    Article  PubMed  Google Scholar 

  5. Kirkali Z, et al. Bladder cancer: epidemiology, staging and grading, and diagnosis. Urol. 2005;66(6 Suppl 1):4–34.

    Article  PubMed  Google Scholar 

  6. Lenis AT, et al. Bladder cancer: a review. JAMA. 2020;324(19):1980–91.

    Article  CAS  PubMed  Google Scholar 

  7. Ennis RD, et al. The effect of cystectomy, and perioperative methotrexate, vinblastine, doxorubicin and cisplatin chemotherapy on the risk and pattern of relapse in patients with muscle invasive bladder cancer. J Urol. 2000;163(5):1413–8.

    Article  CAS  PubMed  Google Scholar 

  8. Grossman HB, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 2003;349(9):859–66.

    Article  CAS  PubMed  Google Scholar 

  9. • Pfister, C., et al., Dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin or gemcitabine and cisplatin as perioperative chemotherapy for patients with nonmetastatic muscle-invasive bladder cancer: results of the GETUG-AFU V05 VESPER Trial. J Clin Oncol., 2022: p. JCO2102051. Randomized phase 3 trial comparing two historical standard platinum-based regimens in the neoadjuvant setting for bladder cancer

  10. Bellmunt J, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Powles T, et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(7):931–45. Phase 3 trial demonstrating efficicacy of first-line pembrolizumab monotherapy

    Article  CAS  PubMed  Google Scholar 

  12. Galsky MD, et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395(10236):1547–57. Negative results of phase 3 trial of first-line atezolizumab

    Article  CAS  PubMed  Google Scholar 

  13. Necchi A, et al. Atezolizumab in platinum-treated locally advanced or metastatic urothelial carcinoma: post-progression outcomes from the phase II IMvigor210 study. Ann Oncol. 2017;28(12):3044–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Powles T, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748–57.

    Article  CAS  PubMed  Google Scholar 

  15. • Powles T, et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med. 2020;383(13):1218–30. Registratrion trial of avelumab maintenance for metastatic disease

    Article  CAS  PubMed  Google Scholar 

  16. Rowe JM, Lowenberg B. Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug. Blood. 2013;121(24):4838–41.

    Article  CAS  PubMed  Google Scholar 

  17. Selby C, Yacko LR, Glode AE. Gemtuzumab ozogamicin: back again. J Adv Pract Oncol. 2019;10(1):68–82.

    PubMed  PubMed Central  Google Scholar 

  18. Ungaro, A., et al., Antibody-drug conjugates in urothelial carcinoma: a new therapeutic opportunity moves from bench to bedside. Cells., 2022. 11(5).

  19. Choi W, et al. A molecular inquiry into the role of antibody-drug conjugates in Bacillus Calmette-Guerin-exposed non-muscle-invasive bladder cancer. Eur Urol. 2022;81(2):138–42.

    Article  CAS  PubMed  Google Scholar 

  20. Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9(1):33–46.

    Article  CAS  PubMed  Google Scholar 

  21. Gerber HP, Koehn FE, Abraham RT. The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat Prod Rep. 2013;30(5):625–39.

    Article  CAS  PubMed  Google Scholar 

  22. Lianos GD, et al. Potential of antibody-drug conjugates and novel therapeutics in breast cancer management. Onco Targets Ther. 2014;7:491–500.

    PubMed  PubMed Central  Google Scholar 

  23. Sliwkowski MX, Mellman I. Antibody therapeutics in cancer. Sci. 2013;341(6151):1192–8.

    Article  CAS  Google Scholar 

  24. Sun Y, Yu F, Sun BW. Antibody-drug conjugates as targeted cancer therapeutics. Yao Xue Xue Bao. 2009;44(9):943–52.

    PubMed  Google Scholar 

  25. Zhan J, Han Q, Wang K. Development of antibody therapeutics for small cell lung cancer. Expert Opin Investig Drugs. 2013;22(2):235–44.

    Article  CAS  PubMed  Google Scholar 

  26. Drake PM, Rabuka D. An emerging playbook for antibody-drug conjugates: lessons from the laboratory and clinic suggest a strategy for improving efficacy and safety. Curr Opin Chem Biol. 2015;28:174–80.

    Article  CAS  PubMed  Google Scholar 

  27. Hedrich WD, et al. Antibody-drug conjugates: pharmacokinetic/pharmacodynamic modeling, preclinical characterization, clinical studies, and lessons learned. Clin Pharmacokinet. 2018;57(6):687–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krieckaert C, Rispens T, Wolbink G. Immunogenicity of biological therapeutics: from assay to patient. Curr Opin Rheumatol. 2012;24(3):306–11.

    Article  PubMed  Google Scholar 

  29. Rosenberg AS. Immunogenicity of biological therapeutics: a hierarchy of concerns. Dev Biol (Basel). 2003;112:15–21.

    CAS  PubMed  Google Scholar 

  30. Ponziani, S., et al., Antibody-drug conjugates: the new frontier of chemotherapy. Int J Mol Sci., 2020. 21(15).

  31. Dragovich PS, et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: exploration of antibody linker, payload loading, and payload molecular properties. J Med Chem. 2021;64(5):2534–75.

    Article  CAS  PubMed  Google Scholar 

  32. Hamilton JZ, et al. Improving antibody-tubulysin conjugates through linker chemistry and site-specific conjugation. Chem Med Chem. 2021;16(7):1077–81.

    Article  CAS  PubMed  Google Scholar 

  33. Shao T, et al. Construction of paclitaxel-based antibody-drug conjugates with a PEGylated linker to achieve superior therapeutic index. Signal Transduct Target Ther. 2020;5(1):132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, et al. Antibody-drug conjugate using ionized cys-linker-MMAE as the potent payload shows optimal therapeutic safety. Cancers (Basel). 2020;12(3)

  35. Alley SC, et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem. 2008;19(3):759–65.

    Article  CAS  PubMed  Google Scholar 

  36. Laguzza BC, et al. New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity. J Med Chem. 1989;32(3):548–55.

    Article  CAS  PubMed  Google Scholar 

  37. Dal Corso A, et al. Protease-cleavable linkers modulate the anticancer activity of noninternalizing antibody-drug conjugates. Bioconjug Chem. 2017;28(7):1826–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Su Z, et al. Antibody-drug conjugates: recent advances in linker chemistry. Acta Pharm Sin B. 2021;11(12):3889–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matsuda Y, Mendelsohn BA. Recent advances in drug-antibody ratio determination of antibody-drug conjugates. Chem Pharm Bull (Tokyo). 2021;69(10):976–83.

    Article  CAS  PubMed  Google Scholar 

  40. Li F, et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res. 2016;76(9):2710–9.

    Article  CAS  PubMed  Google Scholar 

  41. Hafeez U, et al. Antibody-drug conjugates for cancer therapy. Molecules. 2020;25:20.

    Article  Google Scholar 

  42. Trendowski M. Recent advances in the development of antineoplastic agents derived from natural products. Drugs. 2015;75(17):1993–2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen H, et al. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules. 2017;22(8)

  44. Kantarjian HM, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mantaj J, et al. Covalent bonding of pyrrolobenzodiazepines (PBDs) to terminal guanine residues within duplex and hairpin DNA fragments. PLoS One. 2016;11(4):e0152303.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chalouni C, Doll S. Fate of antibody-drug conjugates in cancer cells. J Exp Clin Cancer Res. 2018;37(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khera E, et al. Quantifying ADC bystander payload penetration with cellular resolution using pharmacodynamic mapping. Neoplasia. 2021;23(2):210–21.

    Article  CAS  PubMed  Google Scholar 

  48. Heath EI, Rosenberg JE. The biology and rationale of targeting nectin-4 in urothelial carcinoma. Nat Rev Urol. 2021;18(2):93–103.

    Article  PubMed  Google Scholar 

  49. Reymond N, et al. Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J Biol Chem. 2001;276(46):43205–15.

    Article  CAS  PubMed  Google Scholar 

  50. Calandrella ML, et al. Nectin-4 and DNA mismatch repair proteins expression in upper urinary tract urothelial carcinoma (UTUC) as a model for tumor targeting approaches: an ImGO pilot study. BMC Cancer. 2022;22(1):168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tomiyama E, et al. Expression of Nectin-4 and PD-L1 in upper tract urothelial carcinoma. Int J Mol Sci. 2020;21(15)

  52. Ueki H, et al. Expressions of PD-L1 and Nectin-4 in urothelial cancer patients treated with pembrolizumab. Clin Transl Oncol. 2022;24(3):568–77.

    Article  CAS  PubMed  Google Scholar 

  53. Bouleftour W, Guillot A, Magne N. The anti-Nectin 4: a promising tumor cells target. A systematic review. Mol Cancer Ther. 2022;21(4):493–501.

    Article  CAS  PubMed  Google Scholar 

  54. Targeting Nectin-4 in bladder cancer. Cancer Discov. 2017;7(8):OF3.

  55. Athanassiadou AM, et al. The significance of Survivin and Nectin-4 expression in the prognosis of breast carcinoma. Folia Histochem Cytobiol. 2011;49(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  56. Fan Y, et al. Head-to-head comparison of the expression differences of NECTIN-4, TROP-2, and HER2 in urothelial carcinoma and its histologic variants. Front Oncol. 2022;12:858865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoffman-Censits JH, et al. Expression of Nectin-4 in bladder urothelial carcinoma, in morphologic variants, and nonurothelial histotypes. Appl Immunohistochem Mol Morphol. 2021;29(8):619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Izumi H, et al. Nectin expression in pancreatic adenocarcinoma: nectin-3 is associated with a poor prognosis. Surg Today. 2015;45(4):487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miao X, et al. Nectin-2 and DDX3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinoma of gallbladder. Int J Clin Exp Pathol. 2013;6(2):179–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Deng H, et al. Over-expression of Nectin-4 promotes progression of esophageal cancer and correlates with poor prognosis of the patients. Cancer Cell Int. 2019;19:106.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wong JL, Rosenberg JE. Targeting nectin-4 by antibody-drug conjugates for the treatment of urothelial carcinoma. Expert Opin Biol Ther. 2021;21(7):863–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boylan KL, et al. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget. 2017;8(6):9717–38.

    Article  PubMed  Google Scholar 

  63. • Rosenberg JE, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol. 2019;37(29):2592–600. Results of phaseIII trial of EV after progression on platinum and PD1 inhibitor

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. • Powles T, et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med. 2021;384(12):1125–35. Results of phaseIII trial of EV after progression on platinum and PD1 inhibitor

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. • Rosenberg, J.E., et al., Long-term outcomes in EV-301: 24-month findings from the phase 3 trial of enfortumab vedotin versus chemotherapy in patients with previously treated advanced urothelial carcinoma. 2022, A Soc Clin Oncol.. Results of phaseIII trial of EV after progression on platinum and PD1 inhibitor

  66. Smoking and cancers of the bladder and kidney. Lancet, 1971. 1(7700): p. 635-6

  67. Petrylak, D.P., et al., EV-201: Results of enfortumab vedotin monotherapy for locally advanced or metastatic urothelial cancer previously treated with platinum and immune checkpoint inhibitors. 2019, Am Soc Clin Oncol.

  68. • Rosenberg J, et al. LBA73 Study EV-103 Cohort K: antitumor activity of enfortumab vedotin (EV) monotherapy or in combination with pembrolizumab (P) in previously untreated cisplatin-ineligible patients (pts) with locally advanced or metastatic urothelial cancer (la/mUC). Annals Oncol. 2022;33:S1441. Results of EV monotherapy or in combination with pembrolizumab in the first-line setting in platinum-ineligible patients

    Article  Google Scholar 

  69. Hoimes CJ, et al. Enfortumab vedotin plus pembrolizumab in previously untreated advanced urothelial cancer. J Clin Oncol. 2023;41(1):22–31.

    Article  CAS  PubMed  Google Scholar 

  70. Chou, J., et al., TROP2 expression across molecular subtypes of urothelial carcinoma and enfortumab vedotin-resistant cells. Eur Urol Oncol., 2022.

  71. McDougall AR, et al. Trop2: from development to disease. Dev Dyn. 2015;244(2):99–109.

    Article  CAS  PubMed  Google Scholar 

  72. Tagawa ST, et al. TROPHY-U-01: a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors. J Clin Oncol. 2021;39(22):2474–85. Phase 3 trial of antiTROP2 ADC after progression on platinum and checkpoint inhibitor

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Aruga J. Slitrk6 expression profile in the mouse embryo and its relationship to that of Nlrr3. Gene Expr Patterns. 2003;3(6):727–33.

    Article  CAS  PubMed  Google Scholar 

  74. Katayama K, et al. Disorganized innervation and neuronal loss in the inner ear of Slitrk6-deficient mice. PLoS One. 2009;4(11):e7786.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sanford T, Porten S, Meng MV. Molecular analysis of upper tract and bladder urothelial carcinoma: results from a microarray comparison. PLoS One. 2015;10(8):e0137141.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tan R, et al. HER2 expression, copy number variation and survival outcomes in HER2-low non-metastatic breast cancer: an international multicentre cohort study and TCGA-METABRIC analysis. BMC Med. 2022;20(1):105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Soysal SD, et al. EpCAM expression varies significantly and is differentially associated with prognosis in the luminal B HER2(+), basal-like, and HER2 intrinsic subtypes of breast cancer. Br J Cancer. 2013;108(7):1480–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ochs AM, et al. Expression of vascular endothelial growth factor and HER2/neu in stage II colon cancer and correlation with survival. Clin Colorectal Cancer. 2004;4(4):262–7.

    Article  CAS  PubMed  Google Scholar 

  79. Junker K, et al. HER2/neu expression and amplification in non-small cell lung cancer prior to and after neoadjuvant therapy. Lung Cancer. 2005;48(1):59–67.

    Article  PubMed  Google Scholar 

  80. Harder J, et al. EGFR and HER2 expression in advanced biliary tract cancer. World J Gastroenterol. 2009;15(36):4511–7.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Indini A, Rijavec E, Grossi F. Trastuzumab deruxtecan: changing the destiny of HER2 expressing solid tumors. Int J Mol Sci. 2021;22(9)

  82. Shi F, et al. Disitamab vedotin: a novel antibody-drug conjugates for cancer therapy. Drug Deliv. 2022;29(1):1335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. • Sheng X, et al. Open-label, multicenter, phase II study of RC48-ADC, a HER2-targeting antibody-drug conjugate, in patients with locally advanced or metastatic urothelial carcinoma. Clin Cancer Res. 2021;27(1):43–51. Results of phase II basket trial of anti HER2 ADC including urothelial carcinoma

    Article  CAS  PubMed  Google Scholar 

  84. Schmelzer E, Reid LM. EpCAM expression in normal, non-pathological tissues. Front Biosci. 2008;13:3096–100.

    Article  CAS  PubMed  Google Scholar 

  85. van der Fels, C.A.M., S. Rosati, and I.J. de Jong, EpCAM expression in lymph node metastases of urothelial cell carcinoma of the bladder: a pilot study. Int J Mol Sci., 2017. 18(8).

  86. Fitsialos D, et al. Phase I/II study of vicinium given by intravesical administration in patients with superficial transitional cell carcinoma of the bladder: phase I results. J Clin Oncol. 2006;24(18_suppl):4580–0.

    Article  Google Scholar 

  87. Kowalski M, et al. A phase II study of oportuzumab monatox: an immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with bacillus Calmette-Guerin. J Urol. 2012;188(5):1712–8.

    Article  CAS  PubMed  Google Scholar 

  88. Dickstein R, et al. LBA27 Phase 3 study of Vicinium in BCG-unresponsive non-muscle invasive bladder cancer: initial results. The J Urol. 2018;199(4S):e1167–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Zakharia MD.

Ethics declarations

Funding

Grant/research support from institution clinical trial support from NewLink Genetics, Pfizer, Exelixis, and Eisai.

DSMC: Janssen Research and Development

Consultant honorarium: Pfizer, Novartis

Conflict of Interest

Raafat Alameddine, Patrick Mallea, and Farhan Shahab declare that they have no conflicts of interest. Yousef Zakharia has disclosed the following: Advisory Board: Bristol Myers Squibb, Amgen, Roche Diagnostics, Novartis, Janssen, Eisai, Exelixis, Castle Bioscience, Genzyme Corporation, Astrazeneca, Array, Bayer, Pfizer, Clovis, EMD serono, and Myovant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alameddine, R., Mallea, P., Shahab, F. et al. Antibody Drug Conjugates in Bladder Cancer: Current Milestones and Future Perspectives. Curr. Treat. Options in Oncol. 24, 1167–1182 (2023). https://doi.org/10.1007/s11864-023-01114-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-023-01114-y

Keywords

Navigation