Skip to main content
Log in

Essential Thrombocythemia in Adolescents and Young Adults: Clinical Aspects, Treatment Options and Unmet Medical Needs

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Current treatment of essential thrombocythemia (ET) should primarily prevent thrombo-hemorrhagic events, without increasing the rate of fibrotic progression or leukemic evolution, and secondarily control microvascular symptoms. Unlike other classic BCR::ABL1-negative myeloproliferative neoplasms, ET is frequently diagnosed in adolescents and young adults (AYA), defined as individuals aged 15 to 39 years, in up to 20% of patients. However, since the current risk stratification of this disease is based on models, including that of ELN, IPSET-Thrombosis and its revised version, mainly applied to an older patients’ population, international guidelines are needed that specifically consider how to evaluate the prognosis of AYAs with ET. Furthermore, although ET is the most frequent MPN among AYA subjects, there is a lack of specific recommendations on how to treat it in this subgroup of patients, as management decisions are typically extrapolated from those for the elderly. Accordingly, since AYAs with ET represent a unique disease subset defined by attenuated genetic risk, more indolent phenotype, and longer survival than their older counterparts, treatment selection requires special attention to specific issues such as the risk of fibrotic/leukemic transformation, carcinogenicity, and fertility. This review article will provide a comprehensive overview of the diagnosis, prognostic stratification, and possible therapeutic approaches for AYA patients with ET, including antiplatelets/anticoagulants and cytoreductive agents, with a focus on pregnancy management in real-life clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2008;22:14–22.

    Article  CAS  PubMed  Google Scholar 

  2. Tefferi A. Myeloproliferative neoplasms 2012: the John M. Bennett 80th birthday anniversary lecture. Leuk Res. 2012;36:1481–9.

  3. Radaelli F, Colombi M, Calori R, et al. Analysis of risk factors predicting thrombotic and/or haemorrhagic complications in 306 patients with essential thrombocythemia. Hematol Oncol. 2007;25:115–20.

    Article  PubMed  Google Scholar 

  4. Moulard O, Mehta J, Fryzek J, Olivares R, Iqbal U, Mesa RA. Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in the European Union. Eur J Haematol. 2014;92:289–97.

    Article  PubMed  Google Scholar 

  5. Berlin NI. Diagnosis and classification of the polycythemias. Semin Hematol. 1975;12:339–51.

    CAS  PubMed  Google Scholar 

  6. Najean Y, Mugnier P, Dresch C, Rain JD. Polycythaemia vera in young people: an analysis of 58 cases diagnosed before 40 years. Br J Haematol. 1987;67:285–91.

    Article  CAS  PubMed  Google Scholar 

  7. Gugliotta L, Fiacchini M, et al. Epidemiological, diagnostic, therapeutic and prognostic aspects of essential thrombocythemia in a retrospective study of the GIMMC group in two thousand patients [abstract]. Blood. 1997;90(suppl 1):348a.

    Google Scholar 

  8. Polycythemia vera: the natural history of 1213 patients followed for 20 years. Gruppo Italiano Studio Policitemia. Ann Intern Med. 1995;123:656–64.

  9. Alvarez-Larran A, Cervantes F, Bellosillo B, et al. Essential thrombocythemia in young individuals: frequency and risk factors for vascular events and evolution to myelofibrosis in 126 patients. Leukemia. 2007;21:1218–23.

    Article  CAS  PubMed  Google Scholar 

  10. Palandri F, Polverelli N, Ottaviani E, Castagnetti F, Baccarani M, Vianelli N. Long-term follow-up of essential thrombocythemia in young adults: treatment strategies, major thrombotic complications and pregnancy outcomes. A study of 76 patients. Haematologica. 2010;95:1038–40.

  11. Rollison DE, Howlader N, Smith MT, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs. Blood. 2008;112:45–52.

    Article  CAS  PubMed  Google Scholar 

  12. Thiele J, Kvasnicka HM, Orazi A, et al. Essential thrombocythemia. In: Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES, editors. WHO classification of tumours: pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, France; 2008. p. 48-50.

  13. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  14. •• Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36:1703–19. The new 2022 revision of WHO classification that provided updated diagnostic criteria for all BCR::ABL1-negative myeloproliferative neoplasms, including essential thrombocythemia.

  15. •• Arber DA, Orazi A, Hasserjian RP, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200-28. An additional classification which provided updated diagnostic criteria for all BCR::ABL1-negative myeloproliferative neoplasms, integrating clinical-morphological and molecular features.

  16. Kralovics R, Passamonti F, Buser AS, et al. Gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.

    Article  CAS  PubMed  Google Scholar 

  17. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.

    Article  CAS  PubMed  Google Scholar 

  18. Tefferi A. JAK2 mutations and clinical practice in myeloproliferative neoplasms. Cancer J. 2007;13:366–71.

    Article  CAS  PubMed  Google Scholar 

  19. Levine RL, Pardanani A, Tefferi A, Gilliland DG. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer. 2007;7:673–83.

    Article  CAS  PubMed  Google Scholar 

  20. Vannucchi AM, Antonioli E, Guglielmelli P, Pardanani A, Tefferi A. Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal. Leukemia. 2008;22:1299–307.

    Article  CAS  PubMed  Google Scholar 

  21. Passamonti F, Rumi E. Clinical relevance of JAK2 (V617F) mutant allele burden. Haematologica. 2009;94:7–10.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carobbio A, Finazzi G, Antonioli E, et al. JAK2V617F allele burden and thrombosis: a direct comparison in essential thrombocythemia and polycythemia vera. Exp Hematol. 2009;37:1016–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3: e270.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–6.

    Article  CAS  PubMed  Google Scholar 

  25. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Eng J Med. 2013;369:2379–90.

    Article  CAS  Google Scholar 

  26. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Eng J Med. 2013;369:2391–405.

    Article  CAS  Google Scholar 

  27. Cattaneo D, Croci GA, Bucelli C, et al. Triple-negative essential thrombocythemia: clinical-pathological and molecular features. A single-center cohort study. Front Oncol. 2021;11:637116.

  28. Rotunno G, Mannarelli C, Guglielmelli P, et al. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood. 2014;123:1552–5.

    Article  CAS  PubMed  Google Scholar 

  29. Fabris S, Cattaneo D, Salerio S, et al. Impact on thrombotic risk of canonical and atypical CALR mutations in essential thrombocythemia. A single-center cohort study. Thromb Res. 2022;210:67-9.

  30. Gangat N, Wassie E, Lasho T, et al. Mutations and thrombosis in essential thrombocythemia: prognostic interaction with age and thrombosis history. Eur J Haematol. 2015;94:31–6.

    Article  CAS  PubMed  Google Scholar 

  31. Rumi E, Pietra D, Ferretti V, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocytemia with substantially different clinical course and outcomes. Blood. 2014;123:1544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen CC, Gau JP, Chou HJ, et al. Frequencies, clinical characteristics, and outcome of somatic CALR mutations in JAK2-unmutated essential thrombocythemia. Ann Hematol. 2014;93:2029–36.

    Article  CAS  PubMed  Google Scholar 

  33. Tefferi A, Wassie EA, Guglielmelli P, et al. Type 1 versus type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. Am J Hematol. 2014;89:E121–4.

    Article  CAS  PubMed  Google Scholar 

  34. Perez Encinas MM, Sobas M, Gomez-Casares MT, et al. The risk of thrombosis in essential thrombocythemia is associated with the type of CALR mutation: a multicentre collaborative study. Eur J Haematol. 2021;106:371–9.

    Article  CAS  PubMed  Google Scholar 

  35. Pietra D, Rumi E, Ferretti VV, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30:431–8.

    Article  CAS  PubMed  Google Scholar 

  36. Cervantes F, Alvarez-Larrán A, Talarn C, Gómez M, Montserrat E. Myelofibrosis with myeloid metaplasia following essential thrombocythaemia: actuarial probability, presenting characteristics and evolution in a series of 195 patients. Br J Haematol. 2002;118:786–90.

    Article  PubMed  Google Scholar 

  37. Passamonti F, Rumi E, Arcaini L, et al. Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica. 2008;93:1645–51.

    Article  PubMed  Google Scholar 

  38. Kiladjian JJ, Rain JD, Bernard JF, Briere J, Chomienne C, Fenaux P. Long-term incidence of hematological evolution in three French prospective studies of hydroxyurea and pipobroman in polycythemia vera and essential thrombocythemia. Semin Thromb Hemost. 2006;32:417–21.

    Article  CAS  PubMed  Google Scholar 

  39. Barbui T, Thiele J, Passamonti F, et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol. 2011;29:3179–84.

    Article  PubMed  Google Scholar 

  40. Tefferi A, Elliott M. Thrombosis in myeloproliferative disorders: prevalence, prognostic factors, and the role of leukocytes and JAK2V617F. Semin Thromb Hemost. 2007;33:313–20.

    Article  CAS  PubMed  Google Scholar 

  41. Barbui T, Tefferi A, Vannucchi AM, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32:1057–69.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95:1599–613.

    Article  CAS  PubMed  Google Scholar 

  43. Ferrari A, Stark D, Peccatori FA, et al. Adolescents and young adults (AYA) with cancer: a position paper from the AYA Working Group of the European Society for Medical Oncology (ESMO) and the European Society for Paediatric Oncology (SIOPE). ESMO Open. 2021;6: 100096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol. 2011;29:761–70.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Barbui T, Finazzi G, Carobbio A, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood. 2012;120:5128–33.

    Article  CAS  PubMed  Google Scholar 

  46. Barbui T, Vannucchi AM, Buxhofer-Ausch V, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015;5: e369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Michiels JJ. Acquired von Willebrand disease due to increasing platelet count can readily explain the paradox of thrombosis and bleeding in thrombocythemia. Clin Appl Thromb Hemost. 1999;5:147–51.

    Article  CAS  PubMed  Google Scholar 

  48. • Tefferi A, Guglielmelli P, Lasho TL, et al. Mutation-enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera. Br J Haematol. 2020;189:291–302. The most recent prognostic score available for essential thrombocythemia, which integrates clinical-laboratory and molecular data to define overall survival of patients.

  49. Szuber N, Vallapureddy RR, Penna D, et al. Myeloproliferative neoplasms in the young: Mayo Clinic experience with 361 patients age 40 years or younger. Am J Hematol. 2018;93:1474–84.

    Article  CAS  PubMed  Google Scholar 

  50. Sobas M, Kiladjian J-J, Beauverd Y, et al. Real-world study of children and young adults with myeloproliferative neoplasms: identifying risks and unmet needs. Blood Adv. 2022;6:5171–83.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Landolfi R, Marchioli R, Kutti J, et al. Efficacy and safety of low-dose aspirin in polycythemia vera N Engl J Med. 2004;350:114-24.

  52. Alvarez-Larran A, Pereira A, Guglielmelli P, et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica. 2016;101:926–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chu DK, Hillis CM, Leong DP, Anand SS, Siegal DM. Benefits and risks of antithrombotic therapy in essential thrombocythemia: a systematic review. Ann Intern Med. 2017;167:170–80.

    Article  PubMed  Google Scholar 

  54. Godfrey AL, Green A, Harrison CN. Essential thrombocythemia: challenges in clinical practice and future prospects. Blood. 2022;blood.2022017625. https://doi.org/10.1182/blood.2022017625. Online ahead of print.

  55. Dillinger JG, Sideris G, Henry P, Bal dit Sollier C, Ronez E, Drouet L. Twice daily aspirin to improve biological aspirin efficacy in patients with essential thrombocythemia. Thromb Res. 2012;129:91–4.

  56. •• Rocca B, Tosetto A, Betti S, et al. A randomized double-blind trial of 3 aspirin regimens to optimize antiplatelet therapy in essential thrombocythemia. Blood. 2020;136:171–82. The first clinical trial that specifically evaluated the efficacy and safety profile of different doses of antiplatelet therapy in essential thrombocythemia.

  57. Tosetto A, Rocca B, Petrucci G, et al. Association of platelet thromboxane inhibition by low-dose aspirin with platelet count and cytoreductive therapy in essential thrombocythemia. Clin Pharmacol Ther. 2022;111:939–49.

    Article  CAS  PubMed  Google Scholar 

  58. •• Alvarez-Larrán A, Sant'Antonio E, Harrison C, et al. Unmet clinical needs in the management of CALR-mutated essential thrombocythaemia: a consensus-based proposal from the European LeukemiaNet. Lancet Haematol. 2021;8:e658-65. The most recent ELN proposal for the management of patients with CALR-mutated essential thrombocythemia.

  59. Amerikanou R, Lambert J, Alimam S. Myeloproliferative neoplasms in adolescents and young adults. Best Pract Res Clin Haematol. 2022;35: 101374.

    Article  PubMed  Google Scholar 

  60. Carobbio A, Thiele J, Passamonti F, et al. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients. Blood. 2011;117:5857–9.

    Article  CAS  PubMed  Google Scholar 

  61. Tefferi A, Szuber N, Pardanani A, et al. Extreme thrombocytosis in low-risk essential thrombocythemia: retrospective review of vascular events and treatment strategies. Am J Hematol. 2021;96:E182–4.

    Article  PubMed  Google Scholar 

  62. Finazzi G, Carobbio A, Thiele J, et al. Incidence and risk factors for bleeding in 1104 patients with essential thrombocythemia or prefibrotic myelofibrosis diagnosed according to the 2008 WHO criteria. Leukemia. 2012;26:716–9.

    Article  CAS  PubMed  Google Scholar 

  63. Gangat N, Szuber N, Jawaid T, Hanson CA, Pardanani A, Tefferi A. Young platelet millionaires with essential thrombocythemia. Am J Hematol. 2021;96:E93–5.

    Article  PubMed  Google Scholar 

  64. Koren-Michowitz M, Lavi N, Ellis MH, Vannucchi AM, Mesa R, Harrison CN. Management of extreme thrombocytosis in myeloproliferative neoplasms: an international physician survey. Ann Hematol. 2017;96:87–92.

    Article  PubMed  Google Scholar 

  65. Godfrey AL, Campbell PJ, MacLean C, et al. Hydroxycarbamide plus aspirin versus aspirin alone in patients with essential thrombocythemia age 40 to 59 years without high-risk features. J Clin Oncol. 2018;36:3361–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cortelazzo S, Finazzi G, Ruggeri M, et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med. 1995;332:1132–6.

    Article  CAS  PubMed  Google Scholar 

  67. Harrison CN, Campbell PJ, Buck G, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005;353:33–45.

    Article  CAS  PubMed  Google Scholar 

  68. Hernández-Boluda JC, Alvarez-Larrán A, Gómez M, et al. Clinical evaluation of the European LeukaemiaNet criteria for clinic haematological response and resistance/intolerance to hydroxycarbamide in essential thrombocythaemia. Br J Haematol. 2011;152:81–8.

    Article  PubMed  Google Scholar 

  69. Gisslinger H, Gotic M, Holowiecki J, et al. Anagrelide compared to hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013;121:1720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Birgegård G, Besses C, Griesshammer M, et al. Treatment of essential thrombocythemia in Europe: a prospective long-term observational study of 3649 high-risk patients in the Evaluation of Anagrelide Efficacy and Long-term Safety study. Haematologica. 2018;103:51–60.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ahn IE, Natelson E, Rice L. Successful long-term treatment of Philadelphia chromosome-negative myeloproliferative neoplasms with combination of hydroxyurea and anagrelide. Clin Lymphoma Myeloma Leuk. 2013;13(Suppl 2):S300–4.

    Article  PubMed  Google Scholar 

  72. D’adda M, Micheletti M, Drera M, Ferrari S, Rossi G. The combined use of hydroxyurea and anagrelide allows satisfactory hematologic control in patients with chronic myeloproliferative disorders and thrombocytosis: a report on 13 patients with poor tolerance to hydroxyurea monotherapy. Leuk Lymphoma. 2008;49:2216–8.

    Article  PubMed  Google Scholar 

  73. Gugliotta L, Besses C, Griesshammer M, et al. Combination therapy of hydroxycarbamide with anagrelide in patients with essential thrombocythemia in the evaluation of Xagrid(R) efficacy and long-term safety study. Haematologica. 2014;99:679–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mascarenhas J, Kosiorek HE, Prchal JT, et al. A randomized phase 3 trial of interferon-α vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood. 2022;139:2931–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yacoub A, Mascarenhas J, Kosiorek H, et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood. 2019;134:1498–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gerds AT, Gotlib J, Ali H, et al. Myeloproliferative neoplasms, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022;20:1033–62.

  77. Rumi E, Cazzola M. How I treat essential thrombocythemia. Blood. 2016;128:2403-14.

  78. Quintas-Cardama A, Kantarjian H, Manshouri T, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27:5418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Qureshi A, Kaya B, Pancham S, et al. Guidelines for the use of hydroxycarbamide in children and adults with sickle cell disease. Br J Haematol. 2018;181:460–75.

    Article  PubMed  Google Scholar 

  80. Gangat N, Wolanskyj AP, McClure RF, et al. Risk stratification for survival and leukemic transformation in essential thrombocythemia: a single institutional study of 605 patients. Leukemia. 2007;21:270–6.

    Article  CAS  PubMed  Google Scholar 

  81. Finazzi G, Ruggeri M, Rodeghiero F, Barbui T. Efficacy and safety of long-term use of hydroxyurea in young patients with essential thrombocythemia and a high risk of thrombosis. Blood. 2003;101:3749.

    Article  CAS  PubMed  Google Scholar 

  82. Choi HS, Hong J, Hwang SM, et al. Evaluation of the need for cytoreduction and its potential carcinogenicity in children and young adults with myeloproliferative neoplasms. Ann Hematol. 2021;100:2567–74.

    Article  CAS  PubMed  Google Scholar 

  83. Edahiro Y. Treatment options and pregnancy management for patients with PV and ET. Int J Hematol. 2022;115:659–71.

    Article  CAS  PubMed  Google Scholar 

  84. Iurlo A, Cattaneo D, Orofino N, Bucelli C, Fabris S, Cortelezzi A. Anagrelide and mutational status in essential thrombocythemia. BioDrugs. 2016;30:219–23.

    Article  CAS  PubMed  Google Scholar 

  85. Storen EC, Tefferi A. Long-term use of anagrelide in young patients with essential thrombocythemia. Blood. 2001;97:863–6.

    Article  CAS  PubMed  Google Scholar 

  86. Bieniaszewska M, Sobieralski P, Leszczyńska A, Dutka M. Anagrelide in essential thrombocythemia: efficacy and long-term consequences in young patient population. Leuk Res. 2022;123: 106962.

    Article  CAS  PubMed  Google Scholar 

  87. De Stefano V, Ruggeri M, Cervantes F, et al. High rate of recurrent venous thromboembolism in patients with myeloproliferative neoplasms and effect of prophylaxis with vitamin K antagonists. Leukemia. 2016;30:2032–8.

    Article  PubMed  Google Scholar 

  88. Smalberg JH, Arends LR, Valla DC, Kiladjian JJ, Janssen HL, Leebeek FW. Myeloproliferative neoplasms in Budd-Chiari syndrome and portal vein thrombosis: a meta-analysis. Blood. 2012;120:4921–8.

    Article  CAS  PubMed  Google Scholar 

  89. Sekhar M, McVinnie K, Burroughs AK. Splanchnic vein thrombosis in myeloproliferative neoplasms. Br J Haematol. 2013;162:730–47.

    Article  CAS  PubMed  Google Scholar 

  90. Kearon C, Akl EA, Comerota AJ, et al. Antithrombotic therapy for VTE disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:e419S – e496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ageno W, Dentali F, Squizzato A. How I treat splanchnic vein thrombosis. Blood. 2014;124:3685–91.

    Article  CAS  PubMed  Google Scholar 

  92. De Stefano V, Qi X, Betti S, Rossi E. Splanchnic vein thrombosis and myeloproliferative neoplasms: molecular-driven diagnosis and long-term treatment. Thromb Haemost. 2016;115:240–9.

    Article  PubMed  Google Scholar 

  93. Sant’Antonio E, Guglielmelli P, Pieri L, et al. Splanchnic vein thromboses associated with myeloproliferative neoplasms: An international, retrospective study on 518 cases. Am J Hematol. 2020;95:156–66.

  94. How J, Story C, Ren S, et al. Practice patterns and outcomes of direct oral anticoagulant use in myeloproliferative neoplasm patients. Blood Cancer J. 2021;11:176.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ianotto JC, Couturier MA, Galinat H, et al. Administration of direct oral anticoagulants in patients with myeloproliferative neoplasms. Int J Hematol. 2017;106:517–21.

    Article  CAS  PubMed  Google Scholar 

  96. Barbui T, De Stefano V, Carobbio A, et al. Direct oral anticoagulants for myeloproliferative neoplasms: results from an international study on 442 patients. Leukemia. 2021;35:2989–93.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Herbreteau L, Papageorgiou L, Le Clech L, et al. Benefice and pitfall of direct oral anticoagulants in very high-risk myeloproliferative neoplasms. Thromb Res. 2022;216:25–34.

    Article  CAS  PubMed  Google Scholar 

  98. Hamulyák EN, Daams JG, Leebeek FWG, et al. A systematic review of antithrombotic treatment of venous thromboembolism in patients with myeloproliferative neoplasms. Blood Adv. 2021;5:113–21.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Baysal M, Bayrak M, Eşkazan AE. Current evidence on the use of direct oral anticoagulants in patients with myeloproliferative neoplasm: a systematic review. Expert Rev Hematol. 2023;16:131–40.

    Article  CAS  PubMed  Google Scholar 

  100. Robinson SE, Harrison CN. How we manage Philadelphia-negative myeloproliferative neoplasms in pregnancy. Br J Haematol. 2020;189:625–34.

    Article  PubMed  Google Scholar 

  101. Alimam S, Bewley S, Chappell LC, et al. Pregnancy outcomes in myeloproliferative neoplasms: UK prospective cohort study. Br J Haematol. 2016;175:31–6.

    Article  PubMed  Google Scholar 

  102. Landtblom AR, Andersson TM, Johansson ALV, et al. Pregnancy and childbirth outcomes in women with myeloproliferative neoplasms—a nationwide population-based study of 342 pregnancies in Sweden. Leukemia. 2022;36:2461–7.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Maze D, Kazi S, Gupta V, et al. Association of treatments for myeloproliferative neoplasms during pregnancy with birth rates and maternal outcomes: a systematic review and meta-analysis. JAMA Netw Open. 2019;2: e1912666.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Passamonti F, Randi ML, Rumi E, et al. Increased risk of pregnancy complications in patients with essential thrombocythemia carrying the JAK2 (617V>F) mutation. Blood. 2007;110:485–9.

    Article  CAS  PubMed  Google Scholar 

  105. Rumi E, Bertozzi I, Casetti IC, et al. Impact of mutational status on pregnancy outcome in patients with essential thrombocytemia. Haematologica. 2015;100:443–5.

    Article  Google Scholar 

  106. CLASP: a randomised trial of low-dose aspirin for the prevention and treatment of pre-eclampsia among 9364 pregnant women. CLASP (Collaborative Low-dose Aspirin Study in Pregnancy) Collaborative Group. Lancet. 1994;343:619–29.

  107. Passamonti F, Rumi E, Randi ML, Morra E, Cazzola M. Aspirin in pregnant patients with essential thrombocythemia: a retrospective analysis of 129 pregnancies. J Thromb Haemost. 2010;8:411–3.

    Article  CAS  PubMed  Google Scholar 

  108. Gangat N, Joshi M, Shah S, et al. Pregnancy outcomes in myeloproliferative neoplasms: a Mayo Clinic report on 102 pregnancies Am J Hematol. 2020;95:E114–7.

  109. Cincotta R, Higgins JR, Tippett C, et al. Management of essential thrombocythaemia during pregnancy. Aust N Z J Obstet Gynaecol. 2000;40:33–7.

    Article  CAS  PubMed  Google Scholar 

  110. Niittyvuopio R, Juvonen E, Kaaja R, et al. Pregnancy in essential thrombocythaemia: experience with 40 pregnancies. Eur J Haematol. 2004;73:431–6.

    Article  PubMed  Google Scholar 

  111. Griesshammer M, Struve S, Barbui T. Management of Philadelphia negative chronic myeloproliferative disorders in pregnancy. Blood Rev. 2008;22:235–45.

    Article  PubMed  Google Scholar 

  112. Melillo L, Tieghi A, Candoni A, et al. Outcome of 122 pregnancies in essential thrombocythemia patients: a report from the Italian registry. Am J Hematol. 2009;84:636–40.

    Article  PubMed  Google Scholar 

  113. Gangat N, Tefferi A. Myeloproliferative neoplasms and pregnancy: overview and practice recommendations. Am J Hematol. 2021;96:354–66.

    Article  PubMed  Google Scholar 

  114. Rottenstreich A, Kleinstern G, Amsalem H, Kalish Y. The course of acquired von Willebrand syndrome during pregnancy among patients with essential thrombocytosis. J Thromb Thrombolysis. 2018;46:304–9.

    Article  CAS  PubMed  Google Scholar 

  115. Skeith L, Carrier M, Robinson SE, Alimam S, Rodger MA. Risk of venous thromboembolism in pregnant women with essential thrombocythemia: a systematic review and meta-analysis. Blood. 2017;129:934–9.

    Article  CAS  PubMed  Google Scholar 

  116. Bistervels IM, Buchmüller A, Wiegers HMG, et al. Intermediate-dose versus low-dose low-molecular-weight heparin in pregnant and post-partum women with a history of venous thromboembolism (Highlow study): an open-label, multicentre, randomised, controlled trial. Lancet. 2022;400:1777–87.

    Article  CAS  PubMed  Google Scholar 

  117. Sant’Antonio E, Borsani O, Camerini C, et al. Philadelphia chromosome-negative myeloproliferative neoplasms in younger adults: a critical discussion of unmet medical needs, with a focus on pregnancy. Blood Rev. 2022;52: 100903.

    Article  PubMed  Google Scholar 

  118. Griesshammer M, Sadjadian P, Wille K. Contemporary management of patients with BCR-ABL1-negative myeloproliferative neoplasms during pregnancy. Expert Rev Hematol. 2018;11:697–706.

    Article  CAS  PubMed  Google Scholar 

  119. Schrickel L, Heidel FH, Sadjadian P, et al. Interferon alpha for essential thrombocythemia during 34 high-risk pregnancies: outcome and safety. J Cancer Res Clin Oncol. 2021;147:1481–91.

    Article  CAS  PubMed  Google Scholar 

  120. Puyade M, Cayssials E, Pierre F, Pourrat O. Pregnancy and myeloproliferative neoplasms: a retrospective monocentric cohort. Obstet Med. 2017;10:165–9.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Lapoirie J, Contis A, Guy A, et al. Management and outcomes of 27 pregnancies in women with myeloproliferative neoplasms. J Matern Fetal Neonatal Med. 2020;33:49–56.

    Article  PubMed  Google Scholar 

  122. Beauverd Y, Radia D, Cargo C, et al. Pegylated interferon alpha-2a for essential thrombocythemia during pregnancy: outcome and safety. A case series. Haematologica. 2016;101:e182–4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Iurlo MD, PhD.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iurlo, A., Bucelli, C. & Cattaneo, D. Essential Thrombocythemia in Adolescents and Young Adults: Clinical Aspects, Treatment Options and Unmet Medical Needs. Curr. Treat. Options in Oncol. 24, 802–820 (2023). https://doi.org/10.1007/s11864-023-01099-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-023-01099-8

Keywords

Navigation