Skip to main content

Advertisement

Log in

Update on the Targeted Therapy of Melanoma

  • Skin Cancer (WH Sharfman, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Melanoma is the most aggressive of the cutaneous malignancies, causing more than 9,000 deaths in the past year in the United States. Historically, systemic therapies have been largely ineffective, because melanoma is usually resistant to cytotoxic chemotherapy. However, during the past few years, several targeted therapies have proved effective in this challenging disease. These recent advances have been facilitated by an improved understanding of the driving genetic aberrations of melanoma, particularly mutations in the mitogen-activated protein kinase (MAPK) pathway. Vemurafenib, a BRAF inhibitor, demonstrated an overall survival advantage in phase III trials and is an appropriate option for first-line therapy in metastatic BRAF mutant melanoma. Dabrafenib, another BRAF inhibitor, and trametinib, a MEK inhibitor, also have been shown to be effective in phase III trials for BRAF mutant melanoma and may be additional treatment options as monotherapy or in combination pending regulatory approval. Additionally, imatinib is a promising targeted therapy for patients whose tumors harbor a KIT mutation in exons 11 and 13. Although these targeted agents cause objective responses and clinical benefit in patients with metastatic melanoma, resistance invariably develops. New targets and strategies to overcome acquired resistance are urgently needed. Furthermore, no effective targeted therapy has been developed for NRAS mutant tumors or in melanomas with as yet unknown driver mutations. In this review, we discuss current molecular targeted treatment options and promising ongoing research to develop new strategies to treat melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Cancer Society. Cancer Facts and Figures 2012. Atlanta: American Cancer Society; 2012.

    Google Scholar 

  2. Jemal A, Saraiya M, Patel P, et al. Recent trends in cutaneous melanoma incidence and death rates in the United States, 1992–2006. J Am Acad Dermatol. 2011;65:S17–25. This study highlights the epidemiology and mortality trends in melanoma.

    Article  PubMed  Google Scholar 

  3. Long GV, Menzies AM, Nagrial AM, et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol. 2011;29:1239–46.

    Article  PubMed  Google Scholar 

  4. Lovly CM, Dahlman KB, Fohn LE, et al. Routine multiplex mutational profiling of melanomas enables enrollment in genotype-driven therapeutic trials. PLoS One. 2012;7:e35309.

    Article  PubMed  CAS  Google Scholar 

  5. Beadling C, Jacobson-Dunlop E, Hodi FS, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14:6821–8.

    Article  PubMed  CAS  Google Scholar 

  6. Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.

    Article  PubMed  CAS  Google Scholar 

  7. Wagle N, Emery C, Berger MF, et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 2011;29:3085–96.

    Article  PubMed  CAS  Google Scholar 

  8. Maertens O, Johnson B, Hollstein P, et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discov. 2012. doi:10.1158/2159-8290.CD-12-0313.

  9. Nikolaev SI, Rimoldi D, Iseli C, et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet. 2012;44:133–9.

    Article  CAS  Google Scholar 

  10. Van Raamsdonk CD, Griewank KG, Crosby MB, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363:2191–9.

    Article  PubMed  Google Scholar 

  11. Jakob JA, Bassett Jr RL, Ng CS, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118:4014–23.

    Article  PubMed  CAS  Google Scholar 

  12. Maldonado JL, Fridlyand J, Patel H, et al. Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst. 2003;95:1878–90.

    Article  PubMed  CAS  Google Scholar 

  13. Rubinstein JC, Sznol M, Pavlick AC, et al. Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032. J Transl Med. 2010;8:67.

    Article  PubMed  Google Scholar 

  14. Dahlman KB, Xia J, Hutchinson K, et al. BRAF L597 mutations in melanoma are associated with sensitivity to MEK inhibitors. Cancer Discov. 2012;2:791–7.

    Google Scholar 

  15. Tsai J, Lee JT, Wang W, et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A. 2008;105:3041–6.

    Article  PubMed  CAS  Google Scholar 

  16. Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.

    Article  PubMed  CAS  Google Scholar 

  17. Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366:707–14.

    Article  PubMed  CAS  Google Scholar 

  18. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16. This phase III trial was the first time a mortality benefit was demonstrated for targeted therapy in metastatic melanoma.

    Article  PubMed  CAS  Google Scholar 

  19. Yang H, Higgins B, Kolinsky K, et al. RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res. 2010;70:5518–27.

    Article  PubMed  CAS  Google Scholar 

  20. Su F, Viros A, Milagre C, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 2012;366:207–15. This study demonstrates the molecular basis for secondary squamous cell carcinomas, a unique side effect of BRAF inhibitor therapy.

    Article  PubMed  CAS  Google Scholar 

  21. Hatzivassiliou G, Song K, Yen I, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464:431–5.

    Article  PubMed  CAS  Google Scholar 

  22. Zimmer L, Hillen U, Livingstone E, et al. Atypical melanocytic proliferations and new primary melanomas in patients with advanced melanoma undergoing selective BRAF inhibition. J Clin Oncol. 2012;30:2375–83.

    Article  PubMed  CAS  Google Scholar 

  23. Chapman PB, Metz D, Sepulveda A, et al. Development of colonic adenomas and gastric polyps in BRAF mutant melanoma patients treated with vemurafenib. Pigment Cell Melanoma Res. 2012;25:847.

    Google Scholar 

  24. Callahan MK, Rampal R, Harding JJ, et al. Progression of RAS-Mutant Leukemia during RAF Inhibitor Treatment. N Engl J Med. 2012;367:2316–21.

    Google Scholar 

  25. Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012;379:1893–901.

    Article  PubMed  CAS  Google Scholar 

  26. Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65. Phase III trial demonstrating a mortality benefit in metastatic melanoma for dabrafenib.

    Article  PubMed  CAS  Google Scholar 

  27. Long GV, Trefzer U, Davies MA, et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:1087–95. Phase II trial demonstrating the activity of BRAF inhibitor therapy in patients with brain metastases.

    Google Scholar 

  28. Sullivan RJ, Flaherty K. MAP kinase signaling and inhibition in melanoma. Oncogene. 2012. doi:10.1038/onc.2012.345.A review article detailing therapy targeting the MAP kinase signaling pathway.

  29. Infante JR, Fecher LA, Falchook GS, et al. Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:773–81.

    Article  PubMed  CAS  Google Scholar 

  30. Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14. Phase III trial demonstrating mortality benefit in metastatic melanoma for trametinib.

    Article  PubMed  CAS  Google Scholar 

  31. Ascierto PA, Berking C, Agarwala SS. Efficacy and safety of oral MEK162 in patients with locally advanced and unresectable or metastatic cutaneous melanoma harboring BRAFV600 or NRAS mutations. J Clin Oncol. 2012;30:8511.

    Google Scholar 

  32. Kirkwood JM, Bastholt L, Robert C, et al. Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin Cancer Res. 2012;18:555–67.

    Article  PubMed  CAS  Google Scholar 

  33. Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468:973–7.

    Article  PubMed  CAS  Google Scholar 

  34. Montagut C, Sharma SV, Shioda T, et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 2008;68:4853–61.

    Article  PubMed  CAS  Google Scholar 

  35. Johannessen CM, Boehm JS, Kim SY, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468:968–72.

    Article  PubMed  CAS  Google Scholar 

  36. Poulikakos PI, Persaud Y, Janakiraman M, et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011;480:387–90.

    Article  PubMed  CAS  Google Scholar 

  37. Lito P, Pratilas CA, Joseph EW, et al. Relief of Profound Feedback Inhibition of Mitogenic Signaling by RAF Inhibitors Attenuates Their Activity in BRAFV600E Melanomas. Cancer Cell. 2012;22:668–82.

    Article  PubMed  CAS  Google Scholar 

  38. Villanueva J, Vultur A, Lee JT, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18:683–95.

    Article  PubMed  CAS  Google Scholar 

  39. Wilson TR, Fridlyand J, Yan Y, et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 2012;487:505–9.

    Article  PubMed  CAS  Google Scholar 

  40. Straussman R, Morikawa T, Shee K, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–4. Translational work detailing the newest discovered mechanism of BRAF inhibitor resistance.

    Article  PubMed  CAS  Google Scholar 

  41. Paraiso KH, Fedorenko IV, Cantini LP, et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer. 2010;102:1724–30.

    Article  PubMed  CAS  Google Scholar 

  42. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. N Engl J Med. 2012;367:1694–703. Phase I/II trial demonstrating improved outcomes and fewer cutaneous toxicities from combination BRAF and MEK inhibition compared with monotherapy.

  43. Handolias D, Salemi R, Murray W, et al. Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure. Pigment Cell Melanoma Res. 2010;23:210–5.

    Article  PubMed  CAS  Google Scholar 

  44. Satzger I, Schaefer T, Kuettler U, et al. Analysis of c-KIT expression and KIT gene mutation in human mucosal melanomas. Br J Cancer. 2008;99:2065–9.

    Article  PubMed  CAS  Google Scholar 

  45. Torres-Cabala CA, Wang WL, Trent J, et al. Correlation between KIT expression and KIT mutation in melanoma: a study of 173 cases with emphasis on the acral-lentiginous/mucosal type. Mod Pathol. 2009;22:1446–56.

    Article  PubMed  CAS  Google Scholar 

  46. Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305:2327–34.

    Article  PubMed  CAS  Google Scholar 

  47. Guo J, Si L, Kong Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol. 2011;29:2904–9. Reference 46 and 47 are two phase II trials demonstrating activity of imatinib in KIT mutant melanoma.

    Article  PubMed  CAS  Google Scholar 

  48. Woodman SE, Trent JC, Stemke-Hale K, et al. Activity of dasatinib against L576P KIT mutant melanoma: molecular, cellular, and clinical correlates. Mol Cancer Ther. 2009;8:2079–85.

    Article  PubMed  CAS  Google Scholar 

  49. Kluger HM, Dudek AZ, McCann C, et al. A phase 2 trial of dasatinib in advanced melanoma. Cancer. 2011;117:2202–8.

    Article  PubMed  CAS  Google Scholar 

  50. Minor DR, Kashani-Sabet M, Garrido M, et al. Sunitinib therapy for melanoma patients with KIT mutations. Clin Cancer Res. 2012;18:1457–63.

    Article  PubMed  CAS  Google Scholar 

  51. Handolias D, Hamilton AL, Salemi R, et al. Clinical responses observed with imatinib or sorafenib in melanoma patients expressing mutations in KIT. Br J Cancer. 2010;102:1219–23.

    Article  PubMed  CAS  Google Scholar 

  52. Quintas-Cardama A, Lazar AJ, Woodman SE, et al. Complete response of stage IV anal mucosal melanoma expressing KIT Val560Asp to the multikinase inhibitor sorafenib. Nat Clin Pract Oncol. 2008;5:737–40.

    Article  PubMed  CAS  Google Scholar 

  53. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54. Phase I/II trial demonstrating significant activity of anti-PD-1 therapy as well as biomarker data for PD-L1 expression.

    Article  PubMed  CAS  Google Scholar 

  54. Joseph RW, Sullivan RJ, Harrell R, et al. Correlation of NRAS mutations with clinical response to high-dose IL-2 in patients with advanced melanoma. J Immunother. 2012;35:66–72.

    Article  PubMed  CAS  Google Scholar 

  55. Wilmott JS, Long GV, Howle JR, et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res. 2012;18:1386–94.

    Article  PubMed  CAS  Google Scholar 

  56. Jiang X, Zhou J, Giobbie-Hurder A, et al. The Paradoxical Activation of MAPK in Melanoma Cells Resistant to BRAF Inhibition Promotes PD-L1 Expression that is Reversible by MEK and PI3K inhibition. Clin Cancer Res. 2012;19:598–609.

    Google Scholar 

  57. Paraiso KH, Haarberg HE, Wood E, et al. The HSP90 inhibitor XL888 overcomes BRAF inhibitor resistance mediated through diverse mechanisms. Clin Cancer Res. 2012;18:2502–14.

    Article  PubMed  CAS  Google Scholar 

  58. Jaiswal BS, Janakiraman V, Kljavin NM, et al. Combined targeting of BRAF and CRAF or BRAF and PI3K effector pathways is required for efficacy in NRAS mutant tumors. PLoS One. 2009;4:e5717.

    Article  PubMed  Google Scholar 

  59. Kwong LN, Costello JC, Liu H, et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med. 2012;18:1503–10.

    Article  PubMed  CAS  Google Scholar 

  60. Fruehauf J, Lutzky J, McDermott D, et al. Multicenter, phase II study of axitinib, a selective second-generation inhibitor of vascular endothelial growth factor receptors 1, 2, and 3, in patients with metastatic melanoma. Clin Cancer Res. 2011;17:7462–9.

    Article  PubMed  CAS  Google Scholar 

  61. Kim KB, Sosman JA, Fruehauf JP, et al. BEAM: a randomized phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced melanoma. J Clin Oncol. 2012;30:34–41.

    Article  PubMed  CAS  Google Scholar 

  62. Falchook GS, Lewis KD, Infante JR, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:782–9.

    Article  PubMed  CAS  Google Scholar 

  63. Aoude LG, Vajdic CM, Kricker A, et al. Prevalence of germline BAP1 mutation in a population-based sample of uveal melanoma cases. Pigment Cell Melanoma Res. 2012. doi:10.1111/pcmr.12046.

Download references

Conflicts of Interest

Douglas B. Johnson declares that he has no conflicts of interest.

Jeffrey A. Sosman has consulted for Roche/Genentech and Millennium, has grants/grants pending with BMS, GSK, and Roche, and has received honoraria from Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Johnson MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, D.B., Sosman, J.A. Update on the Targeted Therapy of Melanoma. Curr. Treat. Options in Oncol. 14, 280–292 (2013). https://doi.org/10.1007/s11864-013-0226-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-013-0226-8

Keywords

Navigation