Skip to main content
Log in

Space periodic solutions and rogue wave solution of the derivative nonlinear Schrödinger equation

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

The derivative nonlinear Schrödinger equation, which is extensively applied in plasma physics and nonlinear optics, is analytically studied by Hirota method. Space periodic solutions are determined by means of Hirota’s bilinear formalism, and the rogue wave solution is derived as a long-wave limit of the space periodic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogister A. Parallel propagation of nonlinear low-frequency waves in high-β plasma [J]. The Physics of Fluids, 1971, 14(12): 2733–2739.

    Article  Google Scholar 

  2. Mjølhus E. On the modulational instability of hydromagnetic waves parallel to the magnetic field [J]. Journal of Plasma Physics, 1976, 16(3): 321–334.

    Article  Google Scholar 

  3. Matsumoti H H. Nonlinear Waves and Chaos in Space Plasmas [M]. Tokyo: Terra Scientific Publishing Company, 1997.

    Google Scholar 

  4. Ruderman M S. DNLS equation for large-amplitude solitons propagating in an arbitrary direction in a high-β Hall plasma [J]. Journal of Plasma Physics, 2002, 67(4): 271–276.

    Article  Google Scholar 

  5. Ruderman M S. Propagation of solitons of the derivative nonlinear Schrödinger equation in a plasma with fluctuating density [J]. Physics of Plasmas, 2002, 9(7): 2940–2945.

    Article  CAS  Google Scholar 

  6. Fedun V, Ruderman M S, Erdélyi R. Generation of short-lived large-amplitude magnetohydrodynamic pulses by dispersive focusing [J]. Physics Letters A, 2008, 372(39): 6107–6110.

    Article  CAS  Google Scholar 

  7. Tzoar N, Jain M. Self-phase modulation in long-geometry optical waveguides [J]. Physical Review A, 1981, 23(3): 1266–1270.

    Article  Google Scholar 

  8. Anderson D, Lisak M. Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides [J]. Physical Review A, 1983, 27(3): 1393–1398.

    Article  Google Scholar 

  9. Kaup D J, Newell A C. An exact solution for a derivative nonlinear Schrödinger equation [J]. Journal of Mathematical Physics, 1978, 19(4): 798–801.

    Article  Google Scholar 

  10. Chen H H, Lee Y C, Liu C S. Integrability of nonlinear Hamiltonian systems by inverse scattering method [J]. Physica Scripta, 1979, 20(3-4): 490–492.

    Article  Google Scholar 

  11. Kakei S, Sasa N, Satsuma J. Bilinearization of a generalized derivative nonlinear Schrödinger equation [J]. Journal of the Physical Society of Japan, 1995, 64(5): 1519–1523.

    Article  CAS  Google Scholar 

  12. Yang J. Nonlinear Waves in Integrable and NonintegrableSystems [M]. Philadelphia: Society for Industrial and Applied Mathematics, 2010.

    Book  Google Scholar 

  13. Nakamura A, Chen H H. Multi-soliton solutions of a derivative nonlinear Schrödinger equation [J]. Journal of the Physical Society of Japan, 1980, 49(2): 813–816.

    Article  Google Scholar 

  14. Huang N N, Chen Z Y. Alfven solitons [J]. Journal of Physics A: Mathematical and General, 1999, 23(4): 439–453.

    Article  Google Scholar 

  15. Akhmediev N, Ankiewicz A, Taki M. Waves that appear from nowhere and disappear without a trace [J]. Physics Letters A, 2009, 373(6): 675–678.

    Article  CAS  Google Scholar 

  16. Akhmediev N, Soto-Crespo J M, Ankiewicz A. Extreme waves that appear from nowhere: On the nature of rogue waves [J]. Physics Letters A, 2009, 373(25): 2137–2145.

    Article  CAS  Google Scholar 

  17. Peregrine D H. Water waves, nonlinear Schrödinger equations and their solutions [J]. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 1983, 25(1): 16–43.

    Article  Google Scholar 

  18. Akhmediev N N, Korneev V I. Modulation instability and periodic solutions of the nonlinear Schrödinger equation [J]. Theoretical and Mathematical Physics, 1986, 69(2): 1089–1093.

    Article  Google Scholar 

  19. Ma Y C. The perturbed plane-wave solutions of the Cubic Schrödinger equation [J]. Studies in Applied Mathematics, 1979, 60(1): 43–58.

    Article  Google Scholar 

  20. Xu S, He J, Wang L. The Darboux transformation of the derivative nonlinear Schrödinger equation [J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(30): 305203.

    Article  Google Scholar 

  21. Guo B, Ling L, Liu Q P. High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations [J]. Studies in Applied Mathematics, 2013, 130(4): 317–344.

    Article  Google Scholar 

  22. Zhang Y, Guo L, Xu S, et al. The hierarchy of higher order solutions of the derivative nonlinear Schrödinger equation [J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(6): 1706–1722.

    Article  Google Scholar 

  23. Chen X J, Lam W K. Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions [J]. Physical Review E, 2004, 69(6): 066604.

    Article  Google Scholar 

  24. Cai H. Research about MNLS Equation and DNLS Equation [D]. Wuhan: Wuhan University, 2004(Ch).

    Google Scholar 

  25. Chen X, Yang J, Lam W K. N-soliton solution for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions [J]. Journal of Physics A: Mathematical and General, 2006, 39(13): 3263–3274.

    Article  Google Scholar 

  26. Zhou G Q, Huang N. An N-soliton solution to the DNLS equation based on revised inverse scattering transform [J]. Journal of Physics A: Mathematical and Theoretical, 2007, 40(45): 13607–13623.

    Article  Google Scholar 

  27. Zhou G Q. A newly revised inverse scattering transform for DNLS+ equation under nonvanishing boundary condition [J]. Wuhan University Journal of Natural Sciences, 2012, 17(2): 144–150.

    Article  Google Scholar 

  28. Zhou G Q. Explicit breather-type and pure N-soliton solution of DNLS+ equation with nonvanishing boundary condition [J]. Wuhan University Journal of Natural Sciences, 2013, 18(2): 147–155.

    Article  Google Scholar 

  29. Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons [J]. Physical Review Letters, 1971, 27(18): 1192–1194.

    Article  Google Scholar 

  30. Hirota R. The Direct Method in Soliton Theory [M]. Cambridge: Cambridge University Press, 2004.

    Book  Google Scholar 

  31. Nakamura A. A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. Exact twoperiodic wave solution [J]. Journal of the Physical Society of Japan, 1979, 47(5): 1701–1705.

    Google Scholar 

  32. Dysthe K B, Trulsen K. Note on breather type solutions of the NLS as models for freak-waves [J]. Physica Scripta, 1999, 82(1): 48–52.

    Article  Google Scholar 

  33. Akhmediev N N, Eleonskii V M, Kulagin N E. Exact first-order solutions of the nonlinear Schrödinger equation [J]. Theoretical and Mathematical Physics, 1987, 72(2): 809–818.

    Article  Google Scholar 

  34. Steudel H. The hierarchy of multi-soliton solutions of the derivative nonlinear Schrödinger equation [J]. Journal of Physics A: Mathematical and General, 2003, 36(7): 1931–1946.

    Article  Google Scholar 

  35. Zhou G Q, Bi X. Soliton solution of the DNLS equation based on Hirota’s bilinear derivative transform [J]. Wuhan University Journal of Natural Sciences, 2009, 14(6): 505–510.

    Article  Google Scholar 

  36. Zhou G Q. Hirota’s bilinear derivative transform and soliton solution of the DNLS equation [J]. Physics Bulletin, 2014, 4: 93–97(Ch).

    Google Scholar 

  37. Chan H N, Chow K W, Kedziora D J, et al. Rogue wave modes for a derivative nonlinear Schrödinger model [J]. Physical Review E, 2014, 89(3): 032914.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoquan Zhou.

Additional information

Foundation item: Supported by the Teaching Steering Committee Research Project of Higher-Learning Institutions of Ministry of Education (JZW-16-DD-15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Li, X. Space periodic solutions and rogue wave solution of the derivative nonlinear Schrödinger equation. Wuhan Univ. J. Nat. Sci. 22, 373–379 (2017). https://doi.org/10.1007/s11859-017-1261-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-017-1261-2

Key words

CLC number

Navigation