Skip to main content
Log in

Linear liquid responses of Morpho butterfly structural color: Experiment and modeling

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

This paper investigates the selective liquid response for Morpho didius butterfly wing scales and propose an optical model to explain the effect of different components on the liquid response. It is found out that the reason of the selective response is that the liquid media forms nanometre-thick films between ridge-lamellae nanostructures and changes the constructive interference wavelength. There is linear relation between the structural color of ridge-lamellae structure and index of liquid background media. The reason of vapor’s responses is that the nanometre-thick liquid films on ridge-lamellae nanostructures change the constructive interference wavelength. These liquid films are formed due to vapor adsorption. Therefore, the selective linear liquid response can be applied to design nano-engineered photonic liquid and vapor sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Onslow H. On a periodic structure in many insect scales, and the cause of their iridescent colours [J]. Phil Trans, 1921, 211: 1–74.

    Article  Google Scholar 

  2. Mason C W. Structural colors in insects?[J]. J Phys Chem, 1926, 30: 383–395.

    Article  CAS  Google Scholar 

  3. Vukusic P, Sambles J R, Lawrence C R, et al. Quantified interference and diffraction in single Morpho butterfly scales [J]. Proc R Soc Lond B, 1999, 266(1427): 1403–1411.

    Article  Google Scholar 

  4. Vukusic P, Sambles J R, Lawrence C R. Structural colour: Colour mixing in wing scales of a butterfly [J]. Nature, 2000, 404(6777): 457.

    Article  CAS  PubMed  Google Scholar 

  5. Berthier S, Charron E, Silva A D. Determination of the cuticle index of the scales of the iridescent butterfly Morpho Menelaus [J]. Opt Commun, 2003, 228(4-6): 349–356.

    Article  CAS  Google Scholar 

  6. Kinoshita S C, Yoshioka S Y. Structural colors in nature: The role of regularity and irregularity in the structure [J]. ChemPhysChem, 2005, 6(8): 1442–1459.

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe K. Optical measurement and fabrication from a Morpho-butterfly-scale quasi structure by focused ion beam chemical vapor deposition [J]. J Vac Sci Technol, 2005, 23: 570–574.

    Article  CAS  Google Scholar 

  8. Deparis O, Vandenbem C, Rassart M, et al. Color-selecting reflectors inspired from biological periodic multilayer structures [J]. Opt Express, 2006, 14: 3547–3555.

    Article  CAS  PubMed  Google Scholar 

  9. Berthier S, Charron E, Boulenguez J. Morphological structure and optical properties of the wings of Morphidae [J]. Insect Sci, 2006, 13(2):145–157.

    Article  Google Scholar 

  10. Walter B. Die Oberflachen Oder Schiller-Farben [M]. Whitefish: Kessinger Publishing, 1895.

    Google Scholar 

  11. Biró L P, Bálint Z, Kertésza K, et al. Role of photoniccrystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair [J]. Phys Rev E: Stat Nonlinear Soft Matter Phys, 2003, 67(2):1–7.

    Article  CAS  Google Scholar 

  12. Biró L P, Kertésza K, Vértesy Z, et al. Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors [J]. Proc SPIE, 2008, 7057:1–6.

    Google Scholar 

  13. Potyrailo R A, Ghiradella H, Vertiatchikh A, et al. Morpho butterfly wing scales demonstrate highly selective vapor response [J]. Nature Photonics, 2007, 1(2):123–128.

    Article  CAS  Google Scholar 

  14. Wang Z H, Zhang J H, Xie J, et al. Bioinspired watervapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band [J]. Adv Funct Mater, 2010, 20(21): 3784–3790.

    Article  CAS  Google Scholar 

  15. Yang X F, Peng Z C, Zuo H B, et al. Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling [J]. Sensors and Actuators A: Physical, 2011, 167(2): 367–373.

    Article  CAS  Google Scholar 

  16. Jiang T, Peng Z C, Wu W J. Gas sensing using hierarchical micro/nanostructures of Morpho butterfly scales [J]. Sensors and Actuators A: Physical, 2014, 213(7): 63–69.

    Article  CAS  Google Scholar 

  17. Holtz J H, Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials [J]. Nature, 1997, 389(6653): 829–832.

    Article  CAS  PubMed  Google Scholar 

  18. Lin V S Y, Motesharei K, Dancil K P S, et al. A porous silicon-based optical interferometric biosensor [J]. Science, 1997, 278(5339): 840–843.

    Article  CAS  PubMed  Google Scholar 

  19. Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distancedependent optical properties of gold nanoparticles [J]. Science, 1997, 277(5329):1078–1081.

    Article  CAS  PubMed  Google Scholar 

  20. Gao T, Gao J, Sailor M J. Tuning the response and stability modification [J]. Langmuir, 2002, 18(25): 9953–9957.

    Article  CAS  Google Scholar 

  21. Viespe C, Grigoriu C. Surface acoustic wave sensors with carbon nanotubes and SiO2/Si nanoparticles based nanocomposites for VOC detection [J]. Sensors and Actuators B: Chemical, 2010, 147(1): 43–47.

    Article  CAS  Google Scholar 

  22. Horváth Z E, Koós A A, Kertész K, et al. Mats of functionalized carbon nanotubes for gas/vapor sensing [J]. Nanopages, 2006, 1(2): 209–217.

    Article  Google Scholar 

  23. Horváth Z E, Koós A A, Kertész K, et al. The role of defects in chemical sensing properties of carbon nanotube films [J]. Appl Phys A, 2008, 93(2): 495–504.

    Article  CAS  Google Scholar 

  24. Penza M, Cassano G, Aversa P, et al. Alcohol detection using carbon nanotubes acoustic and optical sensors [J]. Applied Physics Letters, 2004, 85(12): 2379–2391.

    Article  CAS  Google Scholar 

  25. Penza M, Tagliente M A, Aversa P, et al. Organic-vapor detection using carbon-nanotubes nanocomposite microacoustic sensors [J]. Chemical Physics Letters, 2005, 409 (4-6): 349–354.

    Article  CAS  Google Scholar 

  26. Colodrero S, Ocaña M, González-Elipe A R, et al. Response of nanoparticle-based one-dimensional photonic crystals to ambient vapor pressure [J]. Langmuir, 2008, 24(16): 9135–9139.

    Article  CAS  PubMed  Google Scholar 

  27. Hidalgo N, Calvo M E, Colodrero S, et al. Porous one of thin film mesoporous silicon vapor sensors by surface dimensional photonic crystal coatings for gas detection [J]. IEEE Sensors Journal, 2010, 10(7): 1206–1212.

    Article  CAS  Google Scholar 

  28. Wang Z H, Zhang J H, Xie J, et al. Bioinspired watervapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band [J]. Advanced Functional Materials, 2010, 20(21): 3784–3790.

    Article  CAS  Google Scholar 

  29. Wang Z H, Zhang J H, Li J X, et al. Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals [J]. J Mater Chem, 2011, 21(4): 1264–1270.

    Article  CAS  Google Scholar 

  30. Wu W J, Liao G L, Shi T L, et al. The relationship of selective surrounding response and the nanophotonic structures of Morpho butterfly scales [J]. Microelectronic Engineering, 2012, 95(1): 42–48.

    Article  CAS  Google Scholar 

  31. Mann S E, Miaoulis I N, Wong P Y. Spectral imaging, reflectivity measurements, and modeling of iridescent butterfly scale structures [J]. Opt Eng, 2001, 40(10): 2061–2068.

    Article  Google Scholar 

  32. Gralak B, Tayeb G, Enoch S. Morpho butterflies wings color modeled with lamellar grating theory [J]. Optics Express, 2001, 9(11): 567–578.

    Article  CAS  PubMed  Google Scholar 

  33. Hanlon M R, Berrow N S. Dolphin A C, et al. Modelling of a voltage-dependent Ca2+ channel beta subunit as a basis for understanding its functional properties [J]. FEBS Lett 1999, 445(2-3): 366–370.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Wu.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (51305129) and the Natural Science Foundation of Hubei Province (Q20151411)

Biography: WU Wenjun, female, Ph.D., Lecturer, research direction: measurement & control technology and instruments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Xie, H., Liao, G. et al. Linear liquid responses of Morpho butterfly structural color: Experiment and modeling. Wuhan Univ. J. Nat. Sci. 21, 473–481 (2016). https://doi.org/10.1007/s11859-016-1199-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-016-1199-9

Key words

CLC number

Navigation