Skip to main content
Log in

Excellent Color Sensitivity of Butterfly Wing Scales to Liquid Mediums

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The ultrastructure characteristic and vivid colors of butterfly wing scales have attracted considerable attention recently. Surprisingly, these hyperfine structures also endow butterfly Trogonoptera brookiana wing scales the excellent color sensitive property to liquid mediums. In this work, the characteristic features of this excellent functional surface and the mechanism of its highly sensitive response characteristics were investigated. Firstly, the extraordinary and ordered nanostructures of this butterfly wing scales were characterized by a Field Emission Scanning Electron Microscope (FESEM). Then, the ultra-depth three-dimensional (3D) microscope was used to observe the sensitive discoloration effect of the scales to liquid mediums. Afterwards, the highly spectral sensitive feature was identified by a mini spectrometer. In addition, the mechanism of this color sensitive effect of butterfly wing scales was revealed through modelling, calculation and simulation. It was found that this sensitivity is caused by the combined action of the microscale scales and the ultra-fine nanoscale structures in scale surface. On one hand, the arched and bended cover scales were stretched and superimposed by the filled ether solution. So, the color of the scales became reddish brown in an instant. On the other hand, the change of the fill mediums with different reflective index induced the modification of the surface interference, resulting in the peak shift of the reflectance spectrum. More importantly, the results of simulation and theoretical calculation were both in agreement with the experimental results. It illustrated that the butterfly Trogonoptera brookiana wings have repeatable sensitivity to liquid mediums, and obvious discoloration sensitive effect. This spectral sensitivity of butterfly wing scales has great prospect and meaning for the basic research and application of cheap, environmentally free and biodegradable sensitive element for water quality monitoring and analysis system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang B, Ye Y H, Yang L. Mimicking bicolor by changing the reflectance of the substrate in a one-dimensional periodic structure. Applied Optics, 2013, 52, 7586–7591.

    Article  Google Scholar 

  2. Stavenga D G, Wilts B D, Leertouwer H L, Hariyama T. Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima. Philosophical Transactions of the Royal Society B-Biological Sciences, 2011, 366, 709–723.

    Article  Google Scholar 

  3. Yoshioka S, Kinoshita S, Iida H, Hariyama T. Phase-adjusting layers in the multilayer reflector of a jewel beetle. Journal of the Physical Society of Japan, 2012, 81, 054801.

  4. Pouya C, Stavenga D G, Vukusic P. Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus. Optics Express, 2011, 19, 11355–11364.

    Article  Google Scholar 

  5. Burresi M, Cortese L, Pattelli L, Kolle M, Vukusic P, Wiersma D S, Steiner U, Vignolini S. Bright-white beetle scales optimise multiple scattering of light. Scientific Reports, 2014, 4, 6075.

    Article  Google Scholar 

  6. Diao Y Y, Liu X Y. Mysterious coloring: Structural origin of color mixing for two breeds of Papilio butterflies. Optics Express, 2011, 19, 9232–9241.

    Article  Google Scholar 

  7. Michielsen K, De Raedt H, Stavenga D G. Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the green hairstreak butterfly, Callophrys rubi. Journal of the Royal Society Interface, 2010, 7, 765–771.

    Article  Google Scholar 

  8. Biro L P, Vigneron J P. Photonic nanoarchitectures in butterflies and beetles: Valuable sources for bioinspiration. Laser & Photonics Reviews, 2011, 5, 27–51.

    Article  Google Scholar 

  9. Han Z W, Niu S C, Zhang L F, Liu Z N, Ren L Q. Light trapping effect in wing scales of butterfly Papilio peranthus and its simulations. Journal of Bionic Engineering, 2013, 10, 162–169.

    Article  Google Scholar 

  10. Han Z W, Mu Z Z, Yin W, Li W, Niu S C, Zhang J Q, Ren L Q. Biomimetic multifunctional surfaces inspired from animals. Advances in Colloid and Interface Science, 2016, doi: 10.1016/j.cis.2016.03.004.

    Google Scholar 

  11. Wu L P, He J Q, Shang W, Deng T, Gu J J, Su H L, Liu Q L, Zhang W, Zhang D. Optical functional materials inspired by biology. Advanced Optical Materials, 2016, 4, 195–224.

    Article  Google Scholar 

  12. Shen H Z, Wang Z H, Wu Y X, Yang B. One-dimensional photonic crystals: Fabrication, responsiveness and emerging applications in 3D construction. RSC Advances, 2016, 6, 4505–4520.

    Article  Google Scholar 

  13. Zhang D, Zhang W, Gu J J, Fan T X, Liu Q L, Su H L, Zhu S M. Inspiration from butterfly and moth wing scales: Characterization, modeling, and fabrication. Progress in Materials Science, 2015, 68, 67–96.

    Article  Google Scholar 

  14. Vukusic P, Sambles J R. Photonic structures in biology. Nature, 2003, 424, 852–855.

    Article  Google Scholar 

  15. Tian X C, Song G F, Ding X, Gu J J, Liu Q L, Zhang W, Su H L, Kang D M, Qin Z, Zhang D. Photonic structure arrays generated using butterfly wing scales as biological units. Journal of Materials Chemistry B, 2015, 3, 1743–1747.

    Article  Google Scholar 

  16. Parker A R. A geological history of reflecting optics. Journal of the Royal Society Interface, 2005, 2, 1–17.

    Article  Google Scholar 

  17. Seago A E, Brady P, Vigneron J P, Schultz T D. Gold bugs and beyond: A review of iridescence and structural colour mechanisms in beetles (Coleoptera). Journal of the Royal Society Interface, 2009, 6, S165–S184.

    Article  Google Scholar 

  18. Biro L P, Kertesz K, Vertesy Z, Mark G I, Balint Z, Lousse V, Vigneron J P. Living photonic crystals: Butterfly scalesnanostructure and optical properties. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2007, 27, 941–946.

    Article  Google Scholar 

  19. Potyrailo R A, Ghiradella H, Vertiatchikh A, Dovidenko K, Cournoyer J R, Olson E. Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photonics, 2007, 1, 123–128.

    Article  Google Scholar 

  20. Potyrailo R A, Bonam R K, Hartley J G, Starkey T A, Vu-kusic P, Vasudev M, Bunning T, Naik R R, Tang Z X, Palacios M A, Larsen M, Le Tarte L A, Grande J C, Zhong S, Deng T. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies. Nature Communications, 2015, 6, 7959.

    Article  Google Scholar 

  21. Zhang F Y, Shen Q C, Shi X D, Li S P, Wang W L, Luo Z, He G F, Zhang P, Tao P, Song C Y, Zhang W, Zhang D, Deng T, Shang W. Infrared detection based on localized modification of Morpho butterfly wings. Advanced Materials, 2015, 27, 1077–1082.

    Article  Google Scholar 

  22. Zhang W, Zhang D, Fan T X, Gu J J, Ding R, Wang H, Guo Q X, Ogawa H. Novel photoanode structure templated from butterfly wing scales. Chemistry of Materials, 2009, 21, 33–40.

    Article  Google Scholar 

  23. Arsenault A C, Puzzo D P, Manners I, Ozin G A. Photoniccrystal full-colour displays. Nature Photonics, 2007, 1, 468–472.

    Article  Google Scholar 

  24. Choi S S, Morris S M, Huck W T S, Coles H J. Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template. Advanced Materials, 2010, 22, 53–56.

    Article  Google Scholar 

  25. Kolle M, Salgard-Cunha P M, Scherer M R J, Huang F M, Vukusic P, Mahajan S, Baumberg J J, Steiner U. Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nature Nanotechnology, 2010, 5, 511–515.

    Article  Google Scholar 

  26. Fang Y, Sun G, Cong Q, Chen G H, Ren L Q. Effects of methanol on wettability of the non-smooth surface on butterfly wing. Journal of Bionic Engineering, 2008, 5, 127–133.

    Article  Google Scholar 

  27. Sun G, Fang Y, Cong Q, Ren L Q. Anisotropism of the non-smooth surface of butterfly wing. Journal of Bionic Engineering, 2009, 6, 71–76.

    Article  Google Scholar 

  28. Niu S C, Li B, Mu Z Z, Yang M, Zhang J Q, Han Z W, Ren L Q. Excellent structure-based multifunction of Morpho butterfly wings: A review. Journal of Bionic Engineering, 2015, 12, 170–189.

    Article  Google Scholar 

  29. Kim H M, Kim S H, Lee G J, Kim K, Song Y M. Parametric studies on artificial Morpho butterfly wing scales for optical device applications. Journal of Nanomaterials, 2015, 45 1834.

    Google Scholar 

  30. Niu S C, Li B, Ye J F, Mu Z Z, Zhang J Q, Liu Y, Han Z W. Angle-dependent discoloration structures in wing scales of Morpho menelaus butterfly. Science China Technological Sciences, 2016, 59, 749–755.

    Article  Google Scholar 

  31. LeMieux M C, McConney M E, Lin Y H, Singamaneni S, Jiang H, Bunning T J, Tsukruk V V. Polymeric nanolayers as actuators for ultrasensitive thermal bimorphs. Nano Letters, 2006, 6, 730–734.

    Article  Google Scholar 

  32. Han Z W, Mu Z Z, Li B, Niu S C, Zhang J Q, Ren L Q. A high-transmission, multiple antireflective surface inspired from bilayer 3D ultrafine hierarchical structures in butterfly wing scales. Small, 2016, 12, 713–720.

    Article  Google Scholar 

  33. Zhang S C, Chen Y F. Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers. Scientific Reports, 2015, 5, 16637.

    Article  Google Scholar 

  34. Han Z W, Niu S C, Yang M, Mu Z Z, Li B, Zhang J Q, Ye J F, Ren L Q. Unparalleled sensitivity of photonic structures in butterfly wings. RSC Advances, 2014, 4, 45214–45219.

    Article  Google Scholar 

  35. Sambles J R. Biophotonics blue butterflies feel the heat. Nature Photonics, 2012, 6, 141–142.

    Article  Google Scholar 

  36. Han Z W, Niu S C, Shang C H, Liu Z N, Ren L Q. Light trapping structures in wing scales of butterfly Trogonoptera brookiana. Nanoscale, 2012, 4, 2879–2883.

    Article  Google Scholar 

  37. Wu L Y, Han Z W, Qiu Z M, Guan H Y, Ren L Q. The microstructures of butterfly wing scales in northeast of china. Journal of Bionic Engineering, 2007, 4, 47–52.

    Article  Google Scholar 

  38. Han Z W, Niu S C, Yang M, Zhang J Q, Yin W, Ren L Q. An ingenious replica templated from the light trapping structure in butterfly wing scales. Nanoscale, 2013, 5, 8500–8506.

    Article  Google Scholar 

  39. Mann S E, Miaoulis I N, Wong P Y. Spectral imaging, reflectivity measurements, and modeling of iridescent butterfly scale structures. Optical Engineering, 2001, 40, 2061–2068.

    Article  Google Scholar 

  40. Gralak B, Tayeb G, Enoch S. Morpho butterflies wings color modeled with lamellar grating theory. Optics Express, 2001, 9, 567–578.

    Article  Google Scholar 

  41. Wu W J, Liao G, Shi T L, Malik R, Zeng C. The relationship of selective surrounding response and the nanophotonic structures of Morpho butterfly scales. Microelectronic Engineering, 2012, 95, 42–48.

    Article  Google Scholar 

  42. Beche B, Gaviot E. Matrix formalism to enhance the concept of effective dielectric constant. Optics Communications, 2003, 219, 15–19.

    Article  Google Scholar 

  43. Roberts N W. The optics of vertebrate photoreceptors: Anisotropy and form birefringence. Vision Research, 2006, 46, 3259–3266.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Yang, M., Li, B. et al. Excellent Color Sensitivity of Butterfly Wing Scales to Liquid Mediums. J Bionic Eng 13, 355–363 (2016). https://doi.org/10.1016/S1672-6529(16)60308-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(16)60308-6

Keywords

Navigation