Skip to main content
Log in

Optical properties of silver nanoplates synthesized by photoinduced method

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

Silver nanoplates were synthesized in aqueous solution by photoinduced chemical reduction method with tungsten lamp as light source. The growth process was analyzed and characterized. The linear absorption spectra showed that, along with the growth process, the surface plasmon resonance of silver seed nanoparticles at 395 nm decreased gradually, while a new plasmon band at 740 nm corresponding to silver nanoplates appeared and increased gradually. Z-scan technique was used to explore the nonlinear optical properties of silver nanoplates. The results displayed that with the reaction time increases from 0 h to 24 h, the value of nonlinear absorption (NLA) coefficient and the value of nonlinear refraction (NLR) index of the products increased from 0 to 3.167 cm/GW and from 0.64×10−4 to 6.83×10−4 cm2/GW, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding [J]. Nature Photonics, 2007, 1: 641–648.

    Article  Google Scholar 

  2. Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shaps [J]. Chemical Society Reviews, 2006, 35: 209–217.

    Article  Google Scholar 

  3. Liu Fuken, Chang Yucheng, Ko F H, et al. Microwave rapid heating for the synthesis of gold nanorods [J]. Materials Letters, 2004, 58(3–4): 373–377.

    Article  Google Scholar 

  4. Xiong Yujie, Washio Isao, Chen Jingyi, et al. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions [J]. Langmuir, 2006, 22: 8563–8570.

    Article  Google Scholar 

  5. Capek I. Preparation of metal nanoparticles in water-in-oil (W/O) microemulsions [J]. Advances in Cllloid and Interface Science, 2004, 110(1–2): 49–74.

    Article  Google Scholar 

  6. Lim B, Camargo P H C, Xia Younan. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly (vinyl pyrrolidone) [J]. Langmuir, 2008, 24: 10437–10442.

    Article  Google Scholar 

  7. Daniel M C, AStruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem Rev, 2004, 104(1): 293–346.

    Article  Google Scholar 

  8. Ah C S, Yun Y J, Park H J, et al. Size-controlled synthesis of machinable single crystalline gold nanoplates [J]. Chemistry Letters, 2005, 17: 5558–5561.

    Google Scholar 

  9. Burda C, Chen Xiaobo, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem Rev, 2005, 105: 1025–1102.

    Article  Google Scholar 

  10. Hu Jianqiang, Chen Qing, Xie Zhaoxiong, et al. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires [J]. Adv Funct Mater, 2004, 14(2): 183–189.

    Article  Google Scholar 

  11. Li Yat, Qian Fang, Xiang Jie, et al. Nanowires electronic and optoelectronic devices [J]. Materials today, 2006, 9(10): 18–27.

    Article  Google Scholar 

  12. Haes A J, Chang Lei, Klein W L, et al. Detection of a biomarker for alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor [J]. J Am Chem Soc, 2005, 127: 2264–2271.

    Article  Google Scholar 

  13. Haes A J, Van Duyne R P. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles [J]. J Am Chem Soc, 2002, 124: 10596–10604.

    Article  Google Scholar 

  14. Zhou Min, Chen shenhao, Zhao Shiyong, et al. Preparation of gold nanoplates by an electrochemical method [J]. Chemistry Letters, 2005, 34(12): 1670–1671.

    Article  Google Scholar 

  15. Garnett E C, Cai W S, Cha J J, et al. Self-limited plasmonic welding of silver nanowire junctions [J]. Nature Materials, 2012, 11: 241–149.

    Article  Google Scholar 

  16. Li Xiaoling, Zhang Junhu, Xu Weiqing, et al. Mercaptoacetic acid-capped silver nanoparticles colloid: Formation, morphology, and SERS activity [J]. Langmuir, 2003, 19: 4285–4290.

    Article  Google Scholar 

  17. Ajayan P M, Lijima S. Capillarity-induced filling of carbon nanotubes [J]. Nature, 1993, 361: 333–334.

    Article  Google Scholar 

  18. Han yongjin, Kim Jiman, Stucky G D. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15 [J]. Chem Mater, 2000, 12: 2068–2069.

    Article  Google Scholar 

  19. Jakab A, Rosman C, Khalavka Y, et al. Highly sensitive plasmonic silver nanorods [J]. ACS Nano, 2011, 5(9): 6880–6885.

    Article  Google Scholar 

  20. Jin Rongchao, Cao Yunwei, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms [J]. Science, 2001, 294: 1901–0904.

    Article  Google Scholar 

  21. Shiraishi Y, Toshima N. Oxidation of ethylene catalyzed by colloidal dispersions of poly(sodium acrylate)-protected silver nanoclusters [J]. Colloids and Surf A, 2000, 169: 59–66

    Article  Google Scholar 

  22. Sun Tao, Seff K. Silver clusters and chemistry in zeolites [J]. Chem Rev, 1994, 94(4): 857–870.

    Article  Google Scholar 

  23. Sun Yugang, Wiederrecht Gary P. Surfactantless synthesis of silver nanoplates and their application in SERS [J]. Small, 2007, 3(11): 1964–1975.

    Article  Google Scholar 

  24. Xie Yingwei, Ye Ruqiang, Liu Honglai, et al. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant [J]. Colloids and Surf A, 2006, 279(1–3): 175–178.

    Article  Google Scholar 

  25. Liu Xiaolan, Peng Xiaoniu, Yang Zhongjian, et al. Linear and nonlinear optical properties of micrometer-scale gold nanoplates [J]. Chinese Physics Letters, 2011, 28(5): 057805.

    Article  Google Scholar 

  26. Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence [J]. Phys Rev Lett, 2006, 96(113002): 1–4.

    Google Scholar 

  27. Wang Ququan, Han Junbo, Guo Donglai, et al. Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region [J]. Nano Lett, 2007, 7(3): 723–728.

    Article  Google Scholar 

  28. Wang Yuehui, Zhou Xinran, Wang Ting, et al. Enhanced luminescence from lanthanide complex by silver nanoparticles [J]. Materials Letters, 2008, 62(20): 3582–3584.

    Article  Google Scholar 

  29. Jiang X C, Yu A B. Silver Nanoplates: A highly sensitive material toward inorganic anions [J]. Langmuir, 2008, 24: 4300–4309.

    Article  Google Scholar 

  30. Homan K A, Souza M, Truby R, et al. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging [J]. ACS Nano, 6(1): 641–650.

  31. Li Min, Zhang Zongsuo, Yu Xuefeng, et al. Optical properties of Au/Ag core/shell nanoshuttles [J]. Opt Express, 2008, 16(18): 14288–14293.

    Article  Google Scholar 

  32. Zhou Li, Yu Xuefeng, Fu Xiaofeng, et al. Surface plasmon resonance and field enhancement of Au/Ag alloyed hollow nanoshells [J]. Chin Phys Lett, 2008, 25(5): 1776–1779.

    Article  Google Scholar 

  33. Wang Kai, Long Hua, Lu Peixiang, et al. Size-related third-order optical nonlinearities of Au nanoparticles arrays [J]. Opt Express, 2010, 18(13): 13874–13879.

    Article  Google Scholar 

  34. Wang Ququan, Han Junbo, Gong Hongmei, et al. Linear and nonlinear optical properties of Ag nanowire polarizing glass [J]. Adv Funct Mater, 2006, 16: 2405–2408.

    Article  Google Scholar 

  35. Sheik-Bahae M, Said A A, Wei T H, et al. Sensitive measurement of optical nonlinear using a single beam [J]. IEEE Journal of Quantum Electronics, 1990, 26(5): 760–769.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ququan Wang.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (11174229)

Biography: WANG Xiaofang, female, Master candidate, research direction: nonlinear optics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Nan, F., Liang, S. et al. Optical properties of silver nanoplates synthesized by photoinduced method. Wuhan Univ. J. Nat. Sci. 18, 201–206 (2013). https://doi.org/10.1007/s11859-013-0915-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-013-0915-y

Key words

CLC number

Navigation