Skip to main content
Log in

Synthesis and electrochemical properties of FeSbO4 nanorods

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

Well-crystallized FeSbO4 nanorods with rutile-like structure are synthesized through a solid-state reaction and used as cathode material of Li-ion battery for the first time. The obtained nanorods can react with ∼11 Li-ions per FeSbO4 unit with a specific discharge capacity of 1 100 mAh·g between 0.1 and 2.0 V. Three discharge plateaus can be observed during the fully discharging process, but the reversible reaction with ∼1 Li occurs between 1.5 V and 4.5 V vs. Li+/Li, and the reversible capacity is only 50–80 1 mAh·g. FeSbO4 nanorods have a stable cyclic performance between 1.5 V and 4.5 V and it can be used as cathode material for rechargeable Li-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whittingham M S. Lithium batteries and cathode materials [J]. Chemical Reviews, 2004, 104: 4271–4302.

    Article  Google Scholar 

  2. Palacin M R. Recent advances in rechargeable battery materials: A chemist’s perspective [J]. Chemical Society Reviews, 2009, 38: 2565–2575.

    Article  Google Scholar 

  3. Ellis B L, Lee K T, Nazar L F. Positive electrode materials for Li-ion and Li-batteries [J]. Chemistry of Materials, 2010, 22: 691–714.

    Article  Google Scholar 

  4. Cheng F, Liang J, Tao Z, et al. Functional materials for rechargeable batteries [J]. Advanced Materials, 2011, 23: 1695–1715.

    Article  Google Scholar 

  5. Hu Y S, Kienle L, Guo Y G, et al. High lithium electroactivity of nanometer-sized rutile TiO2 [J]. Advanced Materials, 2006, 18: 1421–1426.

    Article  Google Scholar 

  6. Jiao F, Bruce P G. Mesoporous crystalline beta-MnO2: A reversible positive electrode for rechargeable lithium batteries [J]. Advanced Materials, 2007, 19: 657–660.

    Article  Google Scholar 

  7. Pfanzelt M, Kubiak P, Fleischhammer M, et al. TiO2 rutile: An alternative anode material for safe lithium-ion batteries [J]. Journal of Power Sources, 2011, 196: 6815–6821.

    Article  Google Scholar 

  8. Reddy M V, Rao S G V, Chowdari B V R. Chowdari. Nano-(V1/2Sb1/2Sn)O4: A high capacity, high rate anode material for Li-ion batteries [J]. Journal of Materials Chemistry, 2011, 21: 10003–10011.

    Google Scholar 

  9. Simonin L, Lafont U, Tabrizi N, et al. Sb/O nano-composites produced via Spark Discharge Generation for Li-ion battery anodes [J]. Journal of Power Sources, 2007, 174: 805–809.

    Article  Google Scholar 

  10. Xue M Z, Fu Z W. Electrochemical reaction of lithium with nanostructured thin film of antimony trioxide [J]. Electrochemistry Communications, 2006, 8: 1250–1256.

    Article  Google Scholar 

  11. Kundu M, Mahanty S, Basu R N. Lithium antimonite: A new class of anode material for lithium-ion battery [J]. Electrochemistry Communications, 2009, 11: 1389–1392.

    Article  Google Scholar 

  12. Larcher D, Prakash A S, Laffont L, et al. Reactivity of antimony oxides and MSb2O6 (M=Cu,Ni,Co), trirutile-type phases with metallic lithium [J]. Journal of the Electrochemical Society, 2006, 153: A1778–A1787.

    Article  Google Scholar 

  13. Morales J, Sanchez L, Martin F, et al. Electrochemical reaction of lithium with nanosized vanadium antimonate [J]. Journal of Solid State Chemistry, 2006, 179: 2554–2561.

    Article  Google Scholar 

  14. Perez-Flores J C, Kuhn A, Garcia-Alvarado F. Electrochemical performances of BiSbO4 as electrode material for lithium batteries [J]. Journal of Power Sources, 2008, 182: 365–369.

    Article  Google Scholar 

  15. Nag P, Banerjee S, Lee Y, et al. Sonochemical Synthesis and Properties of Nanoparticles of FeSbO4 [J]. Inorganic Chemistry, 2012, 51: 844–850.

    Article  Google Scholar 

  16. Grau-Crespo R, Moreira I D R, Illas F, et al. The effect of cation coordination on the properties of oxygen vacancies in FeSbO4 [J]. Journal of Materials Chemistry, 2006, 16: 1943–1949.

    Article  Google Scholar 

  17. Grau-Crespo R, de Leeuw N H, Catlow C R A. Catlow. distribution of cations in FeSbO4: A computer modeling study [J]. Chemistry of Materials, 2004, 16: 1954–1960.

    Article  Google Scholar 

  18. Koudraichova M V, Harrison N M, de Leeuw S W. Diffusion of Li-ions in rutile. An ab initio study [J]. Solid State Ionics, 2003, 157: 35–38.

    Article  Google Scholar 

  19. Huang Y, Ruiz P. The nature of antimony-enriched surface layer of Fe-Sb mixed oxides [J]. Applied Surface Science, 2006, 252: 7849–7855.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Hu or Tianyou Peng.

Additional information

Foundation item: Supported by the Program for New Century Excellent Talents in University (NCET-07-0637) and the Fundamental Research Funds for the Central Universities (2081003) of China

Biography: ZHANG Qinggang, male, Ph.D. candidate, research direction: cathode material of lithium ion battery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Hu, X., Zhan, D. et al. Synthesis and electrochemical properties of FeSbO4 nanorods. Wuhan Univ. J. Nat. Sci. 18, 185–190 (2013). https://doi.org/10.1007/s11859-013-0912-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-013-0912-1

Key words

CLC number

Navigation