Skip to main content

Advertisement

Log in

Starting points: understanding children’s pre-instructional intuitions about function tables

  • Original Paper
  • Published:
ZDM – Mathematics Education Aims and scope Submit manuscript

Abstract

Functional thinking is an established route into algebra. However, the learning mechanisms that support the transition from arithmetic to functional thinking remain unclear. In the current study we explored children’s pre-instructional intuitive reactions to functional thinking content, relying on a conceptual change perspective and using mixed methods. The sample included 20 grade 3 students and 24 grade 5 students. First, we assessed children’s arithmetic skills and intuitive responses to generalisation tasks involving variation tables. The quantitative analysis showed that students’ arithmetic skills correlated with functional aspects such as the following: identifying, and expressing function rules with words but not with the symbolic expression of function rules. The qualitative analysis revealed that students constructed framework theories that generated different intuitive conceptions of the algebraic ideas involved in noticing and expressing generalisation. Students’ conflicts were concentrated in areas that determine key differences between arithmetic and algebra, such as generalisation, indeterminate quantities, and variable notation. We discuss how these results contribute to explaining the construction of algebra concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blanton, M. L., Brizuela, B. M., Murphy Gardiner, A., Sawrey, K., & Newman-Owens, A. (2015a). A learning trajectory in 6-year-olds’ thinking about generalising functional relationships. Journal for Research in Mathematics Education, 46(5), 511–558. https://doi.org/10.5951/jresematheduc.46.5.0511

    Article  Google Scholar 

  • Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai & E. Knuth (Eds.), Early algebraisation: A global dialogue from multiple perspectives (pp. 5–23). Springer. https://doi.org/10.1007/978-3-642-17735-4_2

    Chapter  Google Scholar 

  • Blanton, M. L., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I., & Kim, J.-S. (2015b). The development of children’s algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46(1), 39–87. https://doi.org/10.5951/jresematheduc.46.1.0039

    Article  Google Scholar 

  • Booth, L. (1984). Algebra: Children’s strategies and errors. A report of the strategies and errors in secondary mathematics project. Nfer-Nelson.

    Google Scholar 

  • Brizuela, B. M., Blanton, M. L., Sawrey, K., Newman-Owens, A., & Murphy Gardiner, A. (2015). Children’s use of variables and variable notation to represent their algebraic ideas. Mathematical Thinking and Learning, 17(1), 34–63. https://doi.org/10.1080/10986065.2015.981939

    Article  Google Scholar 

  • Cañadas, M. C., Brizuela, B. M., & Blanton, M. (2016). Second graders articulating ideas about linear functional relationships. Journal of Mathematical Behavior, 41, 87–103. https://doi.org/10.1016/j.jmathb.2015.10.004

    Article  Google Scholar 

  • Carey, S. (2009). The origin of concepts. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195367638.001.0001

    Book  Google Scholar 

  • Carey, S., & Spelke, E. S. (1994). Domain-specific knowledge and conceptual change. In L. A. Hirschfeld & S. A. Gelman (Eds.), Mapping the mind. Domain specificity in cognition and culture (pp. 169–200). Cambridge University Press.

    Chapter  Google Scholar 

  • Carraher, D. W., Martinez, M. V., & Schliemann, A. D. (2008). Early algebra and mathematical generalisation. ZDM – the International Journal on Mathematics Education, 40(1), 3–22. https://doi.org/10.1007/s11858-007-0067-7

    Article  Google Scholar 

  • Carraher, D. W., Schliemann, A. D., Brizuela, B. M., & Earnest, D. (2006). Arithmetic and algebra in early mathematics education. Journal for Research in Mathematics Education, 37(2), 87–115. https://doi.org/10.2307/30034843

    Article  Google Scholar 

  • Christou, K. P., & Vosniadou, S. (2012). What kinds of numbers do students assign to literal symbols? Aspects of the transition from arithmetic to algebra. Mathematical Thinking and Learning, 14(1), 1–27. https://doi.org/10.1080/10986065.2012.625074

    Article  Google Scholar 

  • Confrey, J., & Smith, E. (1991). A framework for functions: Prototypes, multiple representations and transformations. In R. G. Underhill (Ed.), Proceedings of the 13th Annual Meeting of the North American Chapter of The International Group for the Psychology of Mathematics Education (Vol. 1, pp. 57–63). ERIC.

  • Cooper, T. J., & Warren, E. (2008). The effect of different representations on Years 3 to 5 students’ ability to generalise. ZDM – the International Journal on Mathematics Education, 40(1), 23–37. https://doi.org/10.1007/s11858-007-0066-8

    Article  Google Scholar 

  • Filloy, E., & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. For the Learning of Mathematics, 9(2), 19–25. http://www.jstor.org/stable/40247950

  • Fischbein, E. (1975). Intuition in science and mathematics. An educational approach (Vol. 85). Kluwer Academic Publishers.

    Google Scholar 

  • Inagaki, K., & Hatano, G. (2008). Conceptual change in naïve biology. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 240–262). Routledge.

    Google Scholar 

  • Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 5–17). Lawrence Erlbaum Associates.

    Google Scholar 

  • Kaput, J. J., Blanton, M. L., & Moreno, L. (2008a). Algebra from a symbolisation point of view. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 19–56). Lawrence Erlbaum Associates/Taylor & Francis Group and NCTM.

    Google Scholar 

  • Kaput, J. J., Carraher, D. W., & Blanton, M. L. (2008b). Algebra in the early grades. Routledge.

    Google Scholar 

  • Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317–326.

    Article  Google Scholar 

  • Küchemann, D. (1981). Cognitive demand of secondary school mathematics items. Educational Studies in Mathematics, 12(3), 301–316. https://doi.org/10.1007/BF00311061

    Article  Google Scholar 

  • Leslie, A. M., Gelman, R., & Gallistel, C. R. (2008). The generative basis of natural number concepts. Trends in Cognitive Sciences, 12(6), 213–218. https://doi.org/10.1016/j.tics.2008.03.004

    Article  Google Scholar 

  • Martinez, M., & Brizuela, B. M. (2006). A third grader’s way of thinking about linear function tables. The Journal of Mathematical Behavior, 25(4), 285–298. https://doi.org/10.1016/j.jmathb.2006.11.003

    Article  Google Scholar 

  • Matute, E., Rosselli, M., & Ardila, A. (2007). Evaluación neuropsicológica infantil (ENI). Manual Moderno.

    Google Scholar 

  • McEldoon, K. L., & Rittle-Johnson, B. (2010). Assessing elementary students' functional thinking skills: The case of function tables. In P. Brosnan, D. B. Erchick, & L. Flevares (Eds.), 32nd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (p. 202). Clearinghouse for Science, Mathematics, and Environmental Education.

  • Molina, M., Ambrose, R., & del Rio, A. (2018). First encounter with variables by first and third grade Spanish students. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds (pp. 261–280). Springer. https://doi.org/10.1007/978-3-319-68351-5_11

    Chapter  Google Scholar 

  • Pinto, E., & Cañadas, M. C. (2019). Generalisations of third and fifth graders within a functional approach to early algebra. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-019-00300-2

    Article  Google Scholar 

  • Pinto, E., Cañadas, M. C., & Moreno, A. (2021). Functional relationships evidenced and representations used by third graders within a functional approach to early algebra. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-021-10183-0

    Article  Google Scholar 

  • Radford, L. (2011). Grade 2 students’ Non-symbolic algebraic thinking. In J. Cai & E. Knuth (Eds.), Early algebraisation. A global dialogue from multiple perspectives (pp. 303–322). Springer.

    Google Scholar 

  • Rivera, F. D., & Becker, J. R. (2011). Formation of pattern generalisation involving linear figural patterns among middle school students: Results of a three-year study. In J. Cai & E. Knuth (Eds.), Early algebraisation: A global dialogue from multiple perspectives (pp. 323–366). Springer. https://doi.org/10.1007/978-3-642-17735-4_18

    Chapter  Google Scholar 

  • Rojano, T., & Sutherland, R. (2001). Arithmetic world—Algebra world. In H. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), Proceedings of the 12th ICMI Study Conference: The future of the teaching and learning of algebra (pp. 515–522). The University of Melbourne.

  • Saldaña, J. (2015). The coding manual for qualitative researchers (2nd ed.). Sage.

    Google Scholar 

  • SEP. (2011). Plan de Estudios 2011. Educación Básica. Secretaría de Educación Pública.

  • Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of reification—The case of algebra. In P. Cobb (Ed.), Learning mathematics (pp. 87–124). Springer. https://doi.org/10.1007/978-94-017-2057-1_4

    Chapter  Google Scholar 

  • Spelke, E. S. (2011). Natural number and natural geometry. In S. Dehaene & E. M. Brannon (Eds.), Space, time and number in the brain (pp. 287–317). Elsevier. https://doi.org/10.1016/B978-0-12-385948-8.00018-9

    Chapter  Google Scholar 

  • Stephens, A. C., Fonger, N., Strachota, S., Isler, I., Blanton, M. L., Knuth, E., & Murphy Gardiner, A. (2017). A learning progression for elementary students’ functional thinking. Mathematical Thinking and Learning, 19(3), 143–166. https://doi.org/10.1080/10986065.2017.1328636

    Article  Google Scholar 

  • Tanışlı, D. (2011). Functional thinking ways in relation to linear function tables of elementary school students. The Journal of Mathematical Behavior, 30(3), 206–223. https://doi.org/10.1016/j.jmathb.2011.08.001

    Article  Google Scholar 

  • Vamvakoussi, X., Christou, K. P., & Vosniadou, S. (2018). Bridging psychological and educational research on rational number knowledge. Journal of Numerical Cognition, 4(1), 84–106. https://doi.org/10.5964/jnc.v4i1.82

    Article  Google Scholar 

  • Vosniadou, S. (2017). Initial and scientific understandings and the problem of conceptual change. In T. G. Amin & O. Levrini (Eds.), Converging perspectives on conceptual change (1st ed., pp. 17–25). Routledge.

    Chapter  Google Scholar 

  • Vosniadou, S. (2019). The development of students’ understanding of science. Frontiers in Education. https://doi.org/10.3389/feduc.2019.00032

    Article  Google Scholar 

  • Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 3–34). Routledge.

    Google Scholar 

  • Wilkie, K. J. (2016). Students’ use of variables and multiple representations in generalising functional relationships prior to secondary school. Educational Studies in Mathematics, 93(3), 333–361. https://doi.org/10.1007/s10649-016-9703-x

    Article  Google Scholar 

  • Woods, D. (2021). Transana v4.00. Spurgeon Woods LLC. https://www.transana.com

  • Xolocotzin, U., & Rojano, T. (2015). The development and arithmetic foundations of early functional thinking. 9th Congress of European Research In Mathematics Education.

Download references

Funding

Consejo Nacional de Ciencia y Tecnología (Postdoctoral Fellowship 168620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulises Xolocotzin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xolocotzin, U., Medrano-Moya, A.M. & Rojano, T. Starting points: understanding children’s pre-instructional intuitions about function tables. ZDM Mathematics Education 54, 1363–1376 (2022). https://doi.org/10.1007/s11858-022-01424-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-022-01424-9

Keywords

Navigation