Skip to main content

Advertisement

Log in

Theoretical frameworks for designing and analyzing language-responsive mathematics teaching–learning arrangements

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Practical instructional approaches are often criticized for focusing too exclusively on vocabulary work whereas research has revealed rich insights into the role of language on the discursive level. On the other hand, the mathematics education research community focusing on language has not yet filled the gap between research and classroom practices. In this paper, we present the theoretical frameworks which have grounded our attempts to fill this gap through topic-specific design research on fostering the competence of language learners. The frameworks are used for comparing two teaching–learning arrangements based on a macro-scaffolding and a relating registers approach, one focusing on discursive activation, the second with additional, integrated lexical support. The paper shows how the theoretical frameworks become visible in the design of the intended curriculum and the realized curriculum shaped by teachers’ micro-scaffolding moves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aitchison, J. (2003). Words in the mind: An introduction to the mental lexicon (3rd edn.). Malden: Blackwell Publishing.

    Google Scholar 

  • Bailey, A. L. (2007). Introduction: Teaching and assessing students learning English in school. In A. L. Bailey (Ed.), The language demands of school: Putting academic English to the test (pp. 1–26). New Haven: Yale University Press.

    Google Scholar 

  • Bailey, A. L., Butler, F. A., Stevens, R., & Lord, C. (2007). Further specifying the language demands of school. In A. L. Bailey (Ed.), The language demands of school: Putting academic English to the test (pp. 103–156). New Haven: Yale University Press.

    Google Scholar 

  • Bakker, A., Smit, J., & Wegerif, R. (2015). Scaffolding and dialogic teaching in mathematics education: Introduction and review. ZDM Mathematics Education, 47, 1047–1065.

    Article  Google Scholar 

  • Barwell, R. (2012). Discursive demands and equity in second language mathematics classroom. In B. Herbel-Eisenmann, J. Choppin, D. Wagner & D. Pimm (Eds.), Equity in discourse for mathematics education. Theories, practices, and politics (pp. 147–163). Dordrecht: Springer.

    Google Scholar 

  • Beck, C., & Maier, H. (1994). Zu Methoden der Textinterpretation in der empirischen mathematikdidaktischen Forschung. In H. Maier & J. Voigt (Eds.), Verstehen und Verständigung im Mathematikunterricht—Arbeiten zur interpretativen Unterrichtsforschung (pp. 43–76). Köln: Aulis.

    Google Scholar 

  • Clarkson, P. (2009). Mathematics teaching in Australian multilingual classrooms. In R. Barwell (Ed.), Multilingualism in mathematics classrooms—Global perspectives (pp. 145–160). Bristol: Multilingual Matters.

    Google Scholar 

  • Cobb, P., & Bauersfeld, H. (1995). The emergence of mathematical meaning. Interaction in classroom cultures. Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Erath, K. (2017). Talking about conceptual knowledge. Case study on challenges for students with low language proficiency. In Proceedings of PME 41. Singapore: PME.

  • Erath, K. (2018). Creating space and supporting vulnerable learners. Teachers’ options for facilitating participation in oral explanations and the corresponding epistemic processes. In R. Hunter, M. Civil, B. Herbel-Eisenmann, N. Planas & D. Wagner (Eds.), Mathematical discourse that breaks barriers and creates space for marginalized learners (pp. 39–60). Rotterdam: Sense Publishers.

    Google Scholar 

  • Erath, K., Prediger, S., Quasthoff, U., & Heller, V. Explaining to learn mathematics and learning to explain: Discourse competence as important part of academic language proficiency in mathematics classrooms (submitted).

  • Gee, J. (1996). An introduction to discourse analysis. Theory and method. New York: Routledge.

    Google Scholar 

  • Gibbons, P. (2002). Scaffolding language, scaffolding learning. Teaching second language learners in the mainstream classroom. Portsmouth: Heinemann.

    Google Scholar 

  • Grundler, E. (2009). Argumentieren lernen—die Bedeutung der Lexik. In M. Krelle (Ed.), Sprechen und Kommunizieren: Entwicklungsperspektiven, Diagnosemöglichkeiten und Lernszenarien in Deutschunterricht und Deutschdidaktik (pp. 82–98). Baltmannsweiler: Schneider-Verlag Hohengehren.

    Google Scholar 

  • Haag, N., Heppt, B., Stanat, P., Kuhl, P., & Pant, H. A. (2013). Second language learners’ performance in mathematics: Disentangling the effects of academic language features. Learning and Instruction, 28, 24–34. https://doi.org/10.1016/j.learninstruc.2013.04.001.

    Article  Google Scholar 

  • Hammond, J., & Gibbons, P. (2005). Putting scaffolding to work: The contribution of scaffolding in articulating ESL education. Prospect, 20(1), 6–30.

    Google Scholar 

  • Heller, V., & Morek, M. (2015). Academic discourse as situated practice: An introduction. Linguistics and Education, 28(31), 174–186. https://doi.org/10.1016/j.linged.2014.01.008.

    Article  Google Scholar 

  • Hunt, A., & Beglar, D. (2002). Current research and practice in teaching vocabulary. In J. C. Richards & W. A. Renandya (Eds.), Methodology in language teaching: An anthology of current practice (pp. 254–266). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jorgensen, R. (2011). Language, culture and learning mathematics: A Bourdieuian analysis of indigenous learning. In C. Wyatt-Smith, J. Elkins & S. Gunn (Eds.), Multiple perspectives on difficulties in learning literacy and numeracy (pp. 315–329). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-8864-3_15.

    Chapter  Google Scholar 

  • Krummheuer, G. (2011). Representation of the notion “learning-as-participation” in everyday situations of mathematics classes. ZDM - The International Journal on Mathematics Education, 43, 81–90.

    Article  Google Scholar 

  • Lesh, R., Post, T., & Behr, M. (1987). Representation and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 33–40). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Maier, H., & Schweiger, F. (1999). Mathematik und Sprache. Zum Verstehen und Verwenden von Fachsprache im Unterricht. Wien: öbv & hpt.

    Google Scholar 

  • Margolinas, C. (2013). Task design in mathematics education. In Proceedings of ICMI study 22. <hal-00834054v2>.

  • Morgan, C., Craig, T., Schütte, M., & Wagner, D. (2014). Language and communication in mathematics education: An overview of research in the field. ZDM - The International Journal on Mathematics Education, 46(6), 843–853.

    Article  Google Scholar 

  • Moschkovich, J. (2002). A situated and sociocultural perspective on bilingual mathematics learners. Mathematical Thinking and Learning, 4(2, 3), 189–212.

    Article  Google Scholar 

  • Moschkovich, J. (2013). Principles and guidelines for equitable mathematics teaching practices and materials for English language learners. Journal of Urban Mathematics Education, 6(1), 45–57.

    Google Scholar 

  • Moschkovich, J. (2015). Academic literacy in mathematics for English learners. Journal of Mathematical Behavior, 40, 43–62.

    Article  Google Scholar 

  • Orton, A. (1987). Learning mathematics: Issues, theory, and classroom practice. London: Cassell Education.

    Google Scholar 

  • Pimm, D. (1987). Speaking mathematically: Communication in mathematics classrooms. London: Routledge.

    Google Scholar 

  • Planas, N. (2018). Language as resource: A key notion for understanding the complexity of mathematics learning. Educational Studies in Mathematics, 98(3), 215–229. https://doi.org/10.1007/s10649-018-9810-y.

    Article  Google Scholar 

  • Planas, N., Morgan, C., & Schütte, M. (2018). Mathematics education and language: Lessons and directions from two decades of research. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger & K. Ruthven (Eds.), Developing research in mathematics education. Twenty years of communication, cooperation and collaboration in Europe. London: Routledge.

    Google Scholar 

  • Prediger, S. (2013). Focusing structural relations in the bar board: A design research study for fostering all students’ conceptual understanding of fractions. In B. Ubuz, C. Haser & M. A. Mariotti (Eds.). Proceedings of the 8th congress of the European Society for Research in Mathematics Education (CERME 8 in Antalya 2013) (pp. 343–352). Ankara: METU University.

    Google Scholar 

  • Prediger, S., & Pöhler, B. (2015). The interplay of micro- and macro-scaffolding: An empirical reconstruction for the case of an intervention on percentages. ZDM Mathematics Education, 47, 1179–1194.

    Article  Google Scholar 

  • Prediger, S., & Wessel, L. (2013). Fostering German language learners’ constructions of meanings for fractions: Design and effects of a language- and mathematics-integrated intervention. Mathematics Education Research Journal, 25(3), 435–456.

    Article  Google Scholar 

  • Quasthoff, U. (2012). Globale und lokale Praktiken in unterschiedlichen diskursiven Genre. Wie lösen L2-Sprecher globale Anforderungen bei eingeschränkter sprachstruktureller Kompetenz im Deutschen? In H. Roll & A. Schilling (Eds.), Mehrsprachiges Handeln im Fokus von Linguistik und Didaktik (pp. 47–65). Duisburg: Universitätsverlag Rhein-Ruhr.

    Google Scholar 

  • Quasthoff, U., Heller, V., & Morek, M. (2017). On the sequential organization and genre-orientation of discourse units in interaction. An analytic framework. Discourse Studies, 19(1), 84–110.

    Article  Google Scholar 

  • Riccomini, P. J., Smith, G. W., Hughes, E. M., & Fries, K. M. (2015). The language of mathematics: The importance of teaching and learning mathematical vocabulary. Reading and Writing Quarterly, 31(3), 235–252. https://doi.org/10.1080/10573569.2015.1030995.

    Article  Google Scholar 

  • Schleppegrell, M. J. (2004). The language of schooling: A functional linguistics perspective. Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Sfard, A. (2008). Thinking as communicating. Human development, the growth of discourse, and mathematizing. Cambridge: University Press.

    Book  Google Scholar 

  • Short, D. J. (2017). How to integrate content and language learning effectively for English language learners. Eurasia Journal of Mathematics, Science and Technology Education, 13(7b), 4237–4260. https://doi.org/10.12973/eurasia.2017.00806a.

    Article  Google Scholar 

  • Smit, J., van Eerde, H. A. A., & Bakker, A. (2013). A conceptualisation of whole-class scaffolding. British Educational Research Journal, 39(5), 817–834.

    Article  Google Scholar 

  • Swain, M. (1985). Communicative competence. Some roles of comprehensible output in its development. In S. Gass & C. Madden (Eds.), Input in second language acquisition (pp. 235–256). Rowly: Newbury House.

    Google Scholar 

  • Swan, M. (2005). Standards unit. Improving learning in mathematics: Challenges and strategies. Nottingham: University of Nottingham.

    Google Scholar 

  • Swan, M., & Burkhardt, H. (2012). A designer speaks. Educational Designer, 2(5). http://www.educationaldesigner.org/ed/volume2/issue5/article19. Accessed 26 June 2018.

  • Ufer, S., Reiss, K., & Mehringer, V. (2013). Sprachstand, soziale Herkunft und Bilingualität: Effekte auf Facetten mathematischer Kompetenz. In M. Becker-Mrotzek, K. Schramm, E. Thürmann & H. J. Vollmer (Eds.), Sprache im Fach—Sprachlichkeit und fachliches Lernen (pp. 167–184). Münster: Waxmann.

    Google Scholar 

  • Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher-student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296. https://doi.org/10.1007/s10648-010-9127-6.

    Article  Google Scholar 

  • Wessel, L. (2015). Fach- und sprachintegrierte Förderung durch Darstellungsvernetzung und Scaffolding. Ein Entwicklungsforschungsprojekt zum Anteilbegriff. Heidelberg: Springer Spektrum.

    Google Scholar 

  • Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89–100.

    Article  Google Scholar 

Download references

Acknowledgements

The research project MuM-MESUT (Developing conceptual understanding by language support: Differential effects of language- and content-integrated approaches) has been funded by the German Research Foundation 2015–2017 (DFG-Grant PR 662/14-1 to Susanne Prediger). The authors conducted this research together with Susanne Prediger. We thank her for the collaboration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lena Wessel or Kirstin Erath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wessel, L., Erath, K. Theoretical frameworks for designing and analyzing language-responsive mathematics teaching–learning arrangements. ZDM Mathematics Education 50, 1053–1064 (2018). https://doi.org/10.1007/s11858-018-0980-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-018-0980-y

Keywords

Navigation