Skip to main content

Conceptualizations of professional knowledge for teachers of mathematics

Abstract

Different conceptualizations exist about the components of the knowledge teachers need to teach mathematics with professional consciousness, and a researcher needs to describe and assess that knowledge. The fact, however, is that different conceptualizations respond to different needs, and thus, the variety is even a chance to develop the field further, the field of mathematics-related knowledge for teachers and for teaching. This paper sketches basic ideas of selected theoretical approaches, their goals, their fields of application, and their methods. First, three quite influential projects are introduced: The “Michigan Project” (US), “COACTIV” (Germany), and “TEDS-M” (international). Then three conceptualizations with particular approaches are presented: “Mathematics-for-Teaching” (Canada), Rowland’s “Knowledge Quartet” (UK), and Lindmeier’s “Structure Model” (Germany). The paper closes with some remarks concerning horizons: The first remark points to the restriction of all models of evaluating teachers’ professional knowledge, namely, the everlasting gap between the knowledge per se and the need for acting in the classroom. The second remark reads the recently discussed idea of theory-building as a somewhat neglected aspect of professional knowledge. Thirdly, I discuss briefly how far the seminal CK/PCK distinction could really be an appropriate way into perceiving teachers’ professional knowledge. Finally, I close with a few words on the need not to forget the policy issues of our work. The basic overall idea of the paper is to create—within the limited space—a sufficiently broad spectrum of the issue itself, and what was done in recent years to find a basis for research into teachers’ knowledge as a salient issue for the effective teaching of mathematics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Ball, D. L., & Bass, H. (2003). Toward a practice-based theory of mathematical knowledge for teaching. In B. Davis & E. Simmt (Eds.), Proceedings of the 2002 Annual Meeting of the Canadian Mathematics Education Study Group (pp. 3–14). Edmonton: CMESG/GCEDM.

    Google Scholar 

  • Ball, D. L., & Bass, H. (2009). With an eye on the mathematical horizon: Knowing mathematics for teaching to learners’ mathematical futures. In M. Neubrand (Ed.), Beiträge zum Mathematikunterricht 2009: Vorträge auf der 43. Tagung für Didaktik der Mathematik vom 2.-6. März 2009 in Oldenburg (Vol. 1, pp. 11–22). Münster: WTM-Verlag. Retrieved from http://www.mathematik.tu-dortmund.de/ieem/cms/de/forschung/bzmu/bzmu6.html. Accessed 13 Jan 2018.

  • Ball, D. L., Charalambous, Ch, Thames, M., & Lewis, J. (2009). Research Forum 1: Teacher knowledge and teaching: Viewing a complex relationship from three perspectives. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (PME) (Vol 1, pp. 1/121–1/150). Thessaloniki: PME.

    Google Scholar 

  • Bass, H. (2017). The role of theory building in the teaching of secondary geometry. Educational Studies in Mathematics, 95(3), 229–244. https://doi.org/10.1007/s10649-016-9747-y.

    Article  Google Scholar 

  • Baumert, J., Blum, W., & Neubrand, M. (2004). Drawing the lessons from PISA-2000: Long term research implications. Gaining a better understanding of the relationship between system inputs and learning outcomes by assessing instructional and learning processes as mediating factors. In D. Lenzen, J. Baumert, R. Watermann, & U. Trautwein (Eds.), PISA und die Konsequenzen für die erziehungswissenschaftliche Forschung. Zeitschrift für Erziehungswissenschaft, Beiheft 3/2004, pp. 143–158. (ISBN 978-3-8100-4024-4)

  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, Th, Jordan, A., Klusmann, U., Krauss, S., Neubrand, M., & Tsai, Y. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180. https://doi.org/10.3102/0002831209345157.

    Article  Google Scholar 

  • Beswick, K., & Goos, M. (2012). Measuring pre-service teachers’ knowledge for teaching mathematics. Mathematics Teacher Education and Development, 14(2), 70–90. https://www.merga.net.au/ojs/index.php/mted/article/view/154. Accessed 13 Jan 2018.

  • Blömeke, S., Felbrich, A., Müller, C., Kaiser, G., & Lehmann, R. (2008). Effectiveness of teacher education: State of research, measurement issues and consequences for future teachers. ZDM–Mathematics Education, 40(5), 719–734. https://doi.org/10.1007/s11858-008-0096-x.

    Google Scholar 

  • Cochran-Smith, M., & Zeichner, K. (Eds.). (2005). Studying teacher education. The Report of the AERA Panel on Research and Teacher Education. Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Davis, B., & Simmt, E. (2006). Mathematics-for-teaching: an ongoing investigation of the mathematics that teachers (need to) know. Educational Studies in Mathematics, 61(3), 293–319. https://doi.org/10.1007/s10649-006-2372-4.

    Article  Google Scholar 

  • Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A systematic review of the way in which the concept has pervaded mathematics educational research. Teaching and Teacher Education, 34, 12–25. https://doi.org/10.1016/j.tate.2013.03.001.

    Article  Google Scholar 

  • Dreher, A., Lindmeier, A., & Heinze, A. (2016). Conceptualizing professional content knowledge of secondary teachers taking into account the gap between academic and school mathematics. In C. Csíkos, A. Rausch, & J. Szitányi (Eds.), Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education PME (pp. 219–226). Szeged: PME.

    Google Scholar 

  • Even, R. (1990). Subject matter knowledge for teaching and the case of functions. Educational Studies in Mathematics, 21, 521–544. https://doi.org/10.1007/BF00315943.

    Article  Google Scholar 

  • Even, R., & Ball, D. L. (Eds.). (2009). The professional education and development of teachers of mathematics. The 15th ICMI Study (New ICMI Study Series, Vol. 11). Berlin: Springer.

    Google Scholar 

  • Goos, M. (2014). Communities of practice in mathematics teacher education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 82–84). Dordrecht: Springer.

    Google Scholar 

  • Hill, H., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371–406. https://doi.org/10.3102/00028312042002371.

    Article  Google Scholar 

  • Hillje, M. (2012). Fachdidaktisches Wissen von Lehrerinnen und Lehrern und die didaktische Strukturierung von Mathematikunterricht: Fallanalysen zur kognitiven Aktivierung in Unterrichtsplanungen und realisiertem Unterricht. [Pedagogical content knowledge of teachers and the structuring of mathematics lessons: Case studies on cognitive activation in planned and realized lessons]. Oldenburg: Carl-von-Ossietzky University. Retrieved from http://oops.uni-oldenburg.de/id/eprint/1603. Accessed 13 Jan 2018.

  • Hoyle, E. (2001). Teaching as a profession. In P. Baltes & N. Smelser (Eds.), International encyclopedia of the social and behavioral sciences (Vol. 26, pp. 15472–15476). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Kirschner, P. A., Verschaffel, L., Star, J., & Van Dooren, W. (2017). There is more variation within than across domains: An interview with Paul A. Kirschner about applying cognitive psychology-based instructional design principles in mathematics teaching and learning. ZDM–Mathematics Education, 49(4), 637–643. https://doi.org/10.1007/s11858-017-0875-3.

    Google Scholar 

  • Klieme, E., Pauli, C., & Reusser, K. (2009). The Pythagoras study: Investigating effects of teaching and learning in Swiss and German mathematics classrooms. In T. Janik & T. Seidel (Eds.), The power of video studies in investigating teaching and learning in the classroom (pp. 137–160). Münster: Waxmann.

    Google Scholar 

  • Knievel, I., Lindmeier, A., & Heinze, A. (2015). Beyond knowledge: Measuring primary teachers’ subject-specific competences in and for teaching mathematics with items based on video vignettes. International Journal of Science and Mathematics Education, 13(2), 309–329. https://doi.org/10.1007/s10763-014-9608-z.

    Article  Google Scholar 

  • Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2013). Cognitive activation in the mathematics classroom and professional competence of teachers (Mathematics Teacher Education, Vol. 8). New York: Springer. https://doi.org/10.1007/978-1-4614-5149-5.

  • Kunter, M., Frenzel, A., Nagy, G., Baumert, J., & Pekrun, R. (2011). Teacher enthusiasm: Dimensionality and context specificity. Contemporary Educational Psychology, 36(4), 289–301. https://doi.org/10.1016/j.cedpsych.2011.07.001.

    Article  Google Scholar 

  • Lerman, S. (Ed.). (2014). Encyclopedia of mathematics education. Dordrecht: Springer.

    Google Scholar 

  • Lindmeier, A. (2011). Modeling and measuring knowledge and competencies of teachers: A threefold domain-specific structure model for mathematics. Münster: Waxmann.

    Google Scholar 

  • Neubrand, J. (2002). A classification of mathematics tasks for the analysis of instructional situations: Independent work during phases of student work in the TIMSS Video Study lessons. In Eine Klassifikation mathematischer Aufgaben zur Analyse von Unterrichtssituationen: Selbsttätiges Arbeiten in Schülerarbeitsphasen in den Stunden der TIMSS-Video-Studie. Hildesheim: Franzbecker.

    Google Scholar 

  • Neubrand, J. (2006). The TIMSS 1995 and 1999 Video Studies: In search for appropriate units of analysis. In F.K.S Leung, K.-D. Graf & F. J. Lopez-Real (Eds.), Mathematics education in different cultural traditions: A comparative study of East Asia and the West. The 13th ICMI Study (New ICMI Study Series (Vol. 9, pp. 291–318). Berlin: Springer.

    Google Scholar 

  • Neubrand, M. (2000). Reflecting as a Didaktik construction: Speaking about mathematics in the mathematics classroom. In I. Westbury, ST. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice: The German Didaktik tradition (pp. 251–265). Mahwah; London: Lawrence Erlbaum Associates.

    Google Scholar 

  • Neubrand, M., Biehler, R., Blum, W., Cohors-Fresenborg, E., Flade, L., Knoche, N., Lind, D., Löding, W., Möller, G., & Wynands, A., Deutsche PISA-Expertengruppe Mathematik. (2001). Grundlagen der Ergänzung des internationalen PISA-Mathematik-Tests in der deutschen Zusatzerhebung. Zentralblatt für Didaktik der Mathematik, 33(2), 33–59.

    Article  Google Scholar 

  • Neubrand, M., Jordan, A., Krauss, S., Blum, W., & Löwen, K. (2013). Task analysis in COACTIV: Examining the potential for cognitive activation in German mathematics classrooms (Chap. 7). In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (pp. 125–144). New York: Springer.

    Chapter  Google Scholar 

  • Neubrand, M., & Seago, N., in collaboration with Agudelo-Valderrama, C, DeBlois, L., & Leikin R. (2009). The balance of teacher knowledge: Mathematics and pedagogy. In R. Even & D. L. Ball (Eds.), The professional education and development of teachers of mathematics. The 15th ICMI Study (New ICMI Study Series, Vol. 11, pp. 211–225). Berlin: Springer. https://doi.org/10.1007/978-0-387-09601-8_21.

  • Organization for Economic Cooperation and Development (OECD) (Ed.) (1999). Measuring student knowledge and skills. A new framework for assessment. Paris: OECD.

    Google Scholar 

  • Organization for Economic Cooperation and Development (OECD) (Ed.) (2004). Learning for tomorrow’s world. First results from PISA 2003. Paris: OECD.

    Google Scholar 

  • Pino-Fan, L., Assis, A., & Castro, W. (2015). Towards a methodology for the characterization of teachers’ Didactic-Mathematical Knowledge. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1429–1456. https://doi.org/10.12973/eurasia.2015.1403a.

    Google Scholar 

  • Prenzel, M., Baumert, J., Blum, W., Lehmann, R., Leutner, D., Neubrand, M., Pekrun, R., Rolff, H.-G., Rost, J., & Schiefele, U. (Eds.) (2004). PISA 2003: Der Bildungsstand der Jugendlichen in Deutschland: Ergebnisse des zweiten internationalen Vergleichs. Münster: Waxmann.

    Google Scholar 

  • Rowland, T. (2008a). The purpose, design and use of examples in the teaching of elementary mathematics. Educational Studies in Mathematics, 69(2), 149–163. https://doi.org/10.1007/s10649-008-9148-y.

    Article  Google Scholar 

  • Rowland, T. (2008b). Researching teachers’ mathematics disciplinary knowledge. In P. Sullivan & T. Wood (Eds.), Knowledge and beliefs in mathematics teaching and teaching development. The international handbook of mathematics teacher education (Vol. 1, pp. 273–298). Rotterdam: Sense Publishers.

    Google Scholar 

  • Rowland, T. (2014). Frameworks for conceptualizing mathematics teacher knowledge. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 235–238). Dordrecht: Springer.

    Google Scholar 

  • Rowland, T., & Ruthven, K. (Eds.) (2011). Mathematical knowledge in teaching (Mathematics Education Library, Vol. 50). Dordrecht: Springer. https://doi.org/10.1007/978-90-481-9766-8.

  • Schlump, S., & Neubrand, M. (2013). Teachers think about how to structure mathematics lessons to develop students’ problem-solving competence. In A. Lindmeier, & A. Heinze (Eds.), Proceedings of the 37rd Conference of the International Group for the Psychology of Mathematics Education (PME) (Vol. 5, p. 5/266). Kiel: PME.

    Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Shulman, L. S. (1998). Theory, practice, and the education of professionals. The Elementary School Journal, 98(5), 511–526.

    Article  Google Scholar 

  • Stigler, J. W., Gonzales, P., Kawanaka, T., Knoll, St, & Serrano, A. (1999). The TIMSS Video Tape Classroom Study: Methods and findings from an explanatory research project on eighth-grade mathematics instruction in Germany, Japan and the United States. Washington, D.C.: National Center for Education Statistics (NCES) (Publ. NCES 1999–074).

    Google Scholar 

  • Tatto, M., Schwille, J., Senk, S., Bankov, K., Rodriguez, M., Reckase, M., Ingvarson, L., Rowley, G., & Peck, R. (2012). Policy, practice, and readiness to teach primary and secondary mathematics in 17 countries: Findings from the IEA Teacher Education and Development Study in Mathematics (TEDS-M). Amsterdam: IEA.

    Google Scholar 

  • Tatto, M., Schwille, J., Senk, S., Ingvarson, L., Peck, R., & Rowley, G. (2008). Teacher education and development study in mathematics (TEDS-M): Policy, practice, and readiness to teach primary and secondary mathematics. Conceptual framework. East Lansing, MI: Teacher Education and Development International Study Center, College of Education, Michigan State University.

    Google Scholar 

  • Weinert, F. E. (2001). Concept of competence: a conceptual clarification. In D. Rychen & L. Saganik (Eds.), Defining and selecting key competencies (pp. 45–65). Seattle: Hogrefe & Huber.

    Google Scholar 

  • Weiss, M., & Herbst, P. (2015). The role of theory building in the teaching of secondary geometry. Educational Studies in Mathematics, 89(2), 205–229. https://doi.org/10.1007/s10649-015-9599-x.

    Article  Google Scholar 

  • Wood, T., et al. (2008). The international handbook of mathematics teacher education (Vols. 1, 2, 3, 4). Rotterdam: Sense Publishers.

    Google Scholar 

  • Yang, X. (2104). Conception and characteristics of expert mathematics teachers in China. Wiesbaden: Springer Fachmedien.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Neubrand.

Additional information

This paper is based on the invited survey lecture in the Topic Study Group 46: ‘Knowledge in/for teaching mathematics at secondary level’ at the International Congress on Mathematical Education ICME-13, 2016 in Hamburg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neubrand, M. Conceptualizations of professional knowledge for teachers of mathematics. ZDM Mathematics Education 50, 601–612 (2018). https://doi.org/10.1007/s11858-017-0906-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-017-0906-0

Keywords

  • Professional knowledge of teachers
  • Knowledge for the teaching of mathematics
  • Professionalism of teachers
  • Teaching mathematics at the secondary level
  • Content knowledge
  • Pedagogical content knowledge