Skip to main content

Advertisement

Log in

The use of interactive visualizations to foster the understanding of concepts of calculus: design principles and empirical results

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Calculus and functional thinking are closely related. Functional thinking includes thinking in variations and functional dependencies with a strong emphasis on the aspect of change. Calculus is a climax within school mathematics and the education to functional thinking can be seen as propaedeutics to it. Many authors describe that functions at school are mainly treated in a static way, by regarding them as pointwise relations. This often leads to the underrepresentation of the aspect of change at school. Moreover, calculus at school is mainly procedure-oriented and structural understanding is lacking. In this work, two specially designed interactive activities for the teaching and learning of concepts of calculus based on dynamic geometry software are presented. They accentuate the aspect of change and the object aspect of functions using a double stage visualization. Moreover, the activities allow the discovery and exploration of some concepts of calculus in a qualitative-structural way without knowing or using curve-sketching routines. The activities were used in a qualitative study with 10th grade students of age 15–16 in secondary schools in Berlin, Germany. Some pairs of students were videotaped while working with the activities. After transcribing, the interactions of the students were interpreted and analyzed focusing to the use of the computer. The results show how the students mobilize their knowledge about functions working on the given tasks, and using the activities to formulate important concepts of calculus in a qualitative way. Also, some important epistemological obstacles can be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bender, P. (1991). Ausbildung von Grundvorstellungen und Grundverständnissen—ein tragendes didaktisches Konzept für den Mathematikunterricht—erläutert an Beispielen der Sekundarstufen. In H. Postel, et al. (Eds.), Festschrift für Heinz Griesel (pp. 48–60). Hannover: Schroeder Verlag.

    Google Scholar 

  • Biza, I., & Zachariades, T. (2007). Using dynamic geometry to introduce calculus concepts: CalGeo and the case of derivative. In D. Küchemann (Ed.), Proceedings of the British Society for Research into Learning Mathematics, 27(2), 7–12.

  • Blum, W., & Kirsch, A. (1979). Zur Konzeption des Analysisunterrichts in Grundkursen. Der Mathematikunterricht, 25(3), 6–24.

    Google Scholar 

  • Brousseau, G. (1983). Les obstacles épistémologiques et les problèmes en mathématiques. Revue de Didactique des Mathématiques, 4(2), 165–198.

    Google Scholar 

  • Clement, J. (1989). The concept of variation and misconceptions in cartesian graphing. Focus on Learning Problems in Mathematics, 11(2), 77–87.

    Google Scholar 

  • Dreyfus, T., & Eisenberg, T. (1991). On the reluctance to visualize in mathematics. In W. Zimmermann & S. Cunningham (Eds.), Visualization in Teaching and Learning Mathematics (pp. 25–37). MAA Notes No. 19.

  • Dubinsky, E., & Harel, G. (Eds.). (1992a). The concept of function: Aspects on epistemology and pedagogy. USA: MAA.

    Google Scholar 

  • Dubinsky, E., & Harel, G. (1992b). The nature of the process concept of function—The case of function. In E. Dubinsky & G. Harel (Eds.), The concept of function: Aspects on epistemology and pedagogy (pp. 85–106). USA: MAA.

    Google Scholar 

  • Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66, 317–333.

    Article  Google Scholar 

  • Ferrara, F., Pratt, D., & Robutti, O. (2006). The role and uses of technologies for the teaching of algebra and calculus. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 237–273). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Fischer, R., & Malle, G. (1985). Mensch und Mathematik. Zürich: BI Wissenschaftsverlag.

  • Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Reidel.

  • Goldenberg, E. P., Lewis, P., & O’Keefe, J. (1992). Dynamic representation and the development of an understanding of functions. In E. Dubinsky & G. Harel (Eds.), The concept of function: Aspects on epistemology and pedagogy (pp. 25–58). USA: MAA.

    Google Scholar 

  • Hahn, S., & Prediger, S. (2008). Bestand und Änderung—Ein Beitrag zur Didaktischen Rekonstruktion der Analysis. Journal für Mathematikdidaktik, 29(3/4), 163–198.

    Google Scholar 

  • Hoffkamp, A. (2009). Enhancing functional thinking using the computer for representational transfer. In Proceedings of CERME 6. Lyon.

  • Hoffkamp, A. (2010). Empirische Befunde und neue Gestaltungsprinzipien für einen inhaltlichen Zugang zur Analysis durch Computereinsatz. In Beiträge zum Mathematikunterricht. Hildesheim: Franzbecker Verlag.

  • Janvier, C. (1978). The interpretation of complex cartesian graphs representing situations. PhD Thesis. Nottingham: University of Nottingham, Shell Centre for Mathematical Education.

  • Kortenkamp, U. (2007). Combining CAS and DGS—Towards algorithmic thinking. In L. Shangzhi, et al. (Eds.), Symbolic computation and education. Singapore: World Scientific.

  • Kortenkamp, U., & Richter-Gebert, J. (2006). The interactive geometry software Cinderella, Version 2.0. Springer. http://www.cinderella.de.

  • Krüger, K. (2000). Erziehung zum funktionalen Denken. Zur Begriffsgeschichte eines didaktischen Prinzips. Berlin: Logos Verlag.

    Google Scholar 

  • Maier, H., & Voigt, J. (1991). Interpretative Unterrichtsforschung, IDM-Reihe (Issue 17). Köln: Aulis Verlag.

  • Malik, M. A. (1980). Historical and pedagogical aspects of the definition of function. International Journal of Mathematics Education in Science and Technology, 11(4), 489–492.

    Article  Google Scholar 

  • Mayer, R. (Ed.). (2005). The Cambridge handbook of multimedia learning. New York: Cambridge University Press.

    Google Scholar 

  • Piaget, J. (1972). The psychology of the child. New York: Basic Books.

    Google Scholar 

  • Salomon, G. (1994). Interaction of media, cognition, and learning. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Schlöglhofer, F. (2000). Vom Foto-Graph zum Funktions-Graph. mathematik lehren, 103, 16–17.

    Google Scholar 

  • Schwank, I. (1999). On predicative versus functional cognitive structures. In I. Schwank (Ed.), Proceedings of CERME 1 (Vol. II). Osnabrück.

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

    Article  Google Scholar 

  • Sierpinska, A. (1992). On understanding the notion of function. In E. Dubinsky & G. Harel (Eds.), The concept of function: Aspects on epistemology and pedagogy (pp. 25–58). USA: MAA.

    Google Scholar 

  • Tall, D. (1993). Students’ difficulties in calculus. In C. Gaulin, et al. (Eds.), Proceedings of Working Group 3 on Students’ Difficulties in Calculus, ICME-7 (pp. 13–28). Québec, Canada.

  • Tall, D. (1996). Functions and calculus. In A. Bishop, et al. (Eds.), International handbook of mathematics education, chapter 8 (pp. 289–325). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for Research in Mathematics Education, 20(4), 356–366.

    Article  Google Scholar 

  • Voigt, J. (1995). Thematic patterns of interaction and sociomathematical norms. In P. Cobb (Ed.), The emergence of mathematical meaning: Interaction in classroom cultures, chapter 5 (pp. 163–202). Hilldale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Vollrath, H.-J. (1989). Funktionales Denken. Journal für Mathematikdidaktik, 10(1), 3–37.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Zachariades, T., Pamfilos, P., Christou, C., Maleev, R., & Jones, K. (2007). Teaching introductory calculus: Approaching key ideas with dynamic software. Paper presented at the CETL-MSOR Conference 2007 on Excellence in the Teaching & Learning of Maths, Stats & OR, University of Birmingham, 10–11 September 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Hoffkamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffkamp, A. The use of interactive visualizations to foster the understanding of concepts of calculus: design principles and empirical results. ZDM Mathematics Education 43, 359–372 (2011). https://doi.org/10.1007/s11858-011-0322-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-011-0322-9

Keywords

Mathematics Subject Classification (2010)

Navigation