Skip to main content
Log in

Mathematical cognition: individual differences in resource allocation

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Individuals scoring higher in tests of general cognitive abilities tend to perform better on novel and familiar mathematical tasks. It has been scarcely investigated how this superior mathematical performance relates to the amount of cognitive resources that is invested to solve a given task. In this study we propose that, on novel tasks, individuals with high cognitive abilities outperform less able individuals, because they allocate a higher amount of resources. On familiar tasks, however, individuals with higher abilities profit from more efficient processes compared to individuals of lower cognitive abilities. We tested this hypothesis by administering to 11th graders a geometric analogy task not practiced at school and an algebraic transformation task comprising operations that are routinely required during mathematical courses. General cognitive abilities were measured with Ravens Advanced Progressive matrices (fluid intelligence), the d2 (focused attention) and KAI-N (working memory capacity). Resource allocation was measured by assessing pupil diameter during the problem-solving process. Performance on both the analogy and the algebra task was correlated with general cognitive abilities, especially fluid intelligence. In line with our assumptions, a positive correlation between fluid intelligence and resource allocation was observed in the novel geometric analogy task, whereas the correlation was not significant in the more familiar algebra task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This uneven gender ratio in our sample roughly reflects the gender ratio in these schools.

  2. Replaced data in choice reaction time task 4.9% (SD 9.7); analogy task 5.8% (SD 8.7); algebra task 5.3% (SD 9.1).

  3. This was done to allow for the redilation of the pupil. As the pupil responds with a certain delay to cognitive work (cf. Loewenfeld 1993), processes active during solving the task might be visible in pupillary response shortly after the trial ends.

References

  • Ackerman, P. L., & Heggestad, E. D. (1997). Intelligence, personality, and interests: Evidence for overlapping traits. Psychological Bulletin, 121(2), 219–245.

    Article  Google Scholar 

  • Ahern, S., & Beatty, J. (1979). Pupillary responses during information processing vary with Scholastic Aptitude Test scores. Science, 205(4412), 1289–1292.

    Article  Google Scholar 

  • Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus–norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.

    Article  Google Scholar 

  • Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. Journal of Neuroscience, 14(7), 4467–4480.

    Google Scholar 

  • Aunola, K., Leskinen, E., & Nurmi, J.-E. (2006). Developmental dynamics between mathematical performance, task motivation, and teachers’ goals during the transition to primary school. British Journal of Educational Psychology, 76(1), 21–40.

    Article  Google Scholar 

  • Baddeley, A. (1986). Working memory. Oxford: Oxford University Press.

  • Beatty, J., & Kahneman, D. (1966). Pupillary changes in two memory tasks. Psychonomic Science, 5(10), 371–372.

    Google Scholar 

  • Blair, C. (2006). How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. Behavioral Brain Science, 26, 109–160.

    Google Scholar 

  • Bortz, J. (2005). Statistik für Human- und Sozialwissenschaftler (6th ed.). Heidelberg: Springer.

    Google Scholar 

  • Brickenkamp, R. (1986). Handbuch apparativer Verfahren in der Psychologie. Göttingen: Hogrefe.

    Google Scholar 

  • Brickenkamp, R. (2000). Test d2. Aufmerksamkeits-Belastungs-Test. Göttingen: Hogrefe.

    Google Scholar 

  • Bull, R., & Johnston, R. S. (1997). Children’s arithmetical difficulties: Contributions from processing speed, item identification, and short-term memory. Journal of Experimental Child Psychology, 65, 1–24.

    Article  Google Scholar 

  • Cattell, R. B. (1987). Intelligence: Its structure, growth and action. North-Holland: Amsterdam.

    Google Scholar 

  • Colom, R., Abad, F. J., Quirora, Á., Shih, P. C., & Flores-Mendoza, C. (2008). Working memory and intelligence are highly related constructs, but why? Intelligence, 36, 584–606.

    Article  Google Scholar 

  • Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7, 547–552.

    Article  Google Scholar 

  • Courant, R., & Robbins, H. (1996). What is mathematics? An elementary approach to ideas and methods. Oxford: Oxford University Press.

    Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.

    Article  Google Scholar 

  • Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., et al. (2003). Learning complex arithmetic—An fMRI study. Cognitive Brain Research, 18(1), 76–88.

    Article  Google Scholar 

  • Duncan, J. (2003). Intelligence tests predict brain response to demanding task events. Nature Neuroscience, 6(3), 207–208.

    Article  Google Scholar 

  • Ferrer, E., O’Hare, E. D., & Bunge, S. A. (2009). Fluid reasoning and the developing brain. Frontiers in Neuroscience, 3, 46–51.

    Article  Google Scholar 

  • Floyd, R. G., Evans, J. J., & McGrew, K. S. (2003). Relations between measures of Cattell–Horn–Carroll (CHC) cognitive abilities and mathematics achievement across the school years. Psychology in the schools, 40(2), 155–171.

    Article  Google Scholar 

  • Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295, 2279–2281.

    Article  Google Scholar 

  • Gilzenrat, M. S., Cohen, J. D., Rajkowski, J., & Aston-Jones, G. (2003). Pupil dynamics predict changes in task engagement mediated by locus coeruleus. Society of Neurosciences, Abstracts, Program No. 515.19.

  • Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience (in press).

  • Goswami, U. (1992). Analogical reasoning in children. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Gottfredson, L. S. (1997). Why g matters: the complexity of everyday life. Intelligence, 24, 79–132.

    Article  Google Scholar 

  • Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., & Neuper, C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 47, 604–608.

    Article  Google Scholar 

  • Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. Neuroimage, 38(2), 346–356.

    Article  Google Scholar 

  • Grabner, R. H., Stern, E., & Neubauer, A. C. (2003). When intelligence loses its impact: neural efficiency during reasoning in a familiar area. International Journal of Psychophysiology, 49, 89–98.

    Article  Google Scholar 

  • Granholm, E., & Steinhauer, S. R. (2004). Pupillometric measures of cognitive and emotional processes. International Journal of Psychophysiology, 52(1), 1–6.

    Article  Google Scholar 

  • Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316–322.

    Article  Google Scholar 

  • Hayes, J. R. (1973). On the function of visual imagery in elementary mathematics. In W. Chase (Ed.), Visual information processing (pp. 177–214). New York: Academic Press.

    Google Scholar 

  • Heitz, R. P., Schrock, J. C., Payne, T. W., & Engle, R. W. (2008). Effects of incentive on working memory capacity: Behavioral and pupillometric data. Psychophysiology, 45(1), 119–129.

    Google Scholar 

  • Heller, K. A., Kratzmeier, H., & Lengfelder, A. (1998). Matrices-test-manual volume 2. A manual with German norms for the standard progressive matrices of J.C. Raven.. Weinheim: Beltz-Test GmbH.

    Google Scholar 

  • Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143(3611), 1190–1192.

    Article  Google Scholar 

  • Ischebeck, A., Zamarian, L., Egger, K., Schocke, M., & Delazer, M. (2007). Imaging early practice effects in arithmetic. Neuroimage, 36, 993–1003.

    Article  Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99(1), 122–149.

    Article  Google Scholar 

  • Just, M. A., Carpenter, P. A., & Miyake, A. (2003). Neuroindices of cognitive workload: Neuroimaging, pupillometric and event-related potential studies of brain work. Theoretical Issues in Ergonomics Science, 4(1), 56–88.

    Article  Google Scholar 

  • Kahneman, D., & Beatty, J. (1967). Pupillary responses in a pitch-discrimination task. Perception & Psychophysics, 2(3), 101–105.

    Article  Google Scholar 

  • Kail, R., & Hall, L. K. (1999). Sources of developmental change in children’s word problem performance. Journal of Educational Psychology, 91, 660–668.

    Article  Google Scholar 

  • Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J.-H., Lee, S., et al. (2006). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. Neuroimage, 29(2), 578–586.

    Article  Google Scholar 

  • LeFerve, J., DeStefano, D., Coleman, B., & Shanahan, T. (2005). Mathematical cognition and working memory. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition. New York: Psychology Press.

    Google Scholar 

  • Lehrl, S., & Blaha, L. (2004). Messung des Arbeitsgedächtnisses, KAI-N. Ebersberg: VLESS.

    Google Scholar 

  • Loewenfeld, I. E. (1993). The pupil. Iowa State University Press: Ames.

    Google Scholar 

  • McArdle, J. J., Ferrer-Caja, E., Hamagami, F., & Woodcock, R. W. (2002). Comparative longitudinal structural analysis of growth and decline of multiple intellectual abilities over the lifespan. Developmental Psychology, 38, 113–142.

    Article  Google Scholar 

  • Mogle, J. A., Lovett, B. J., Stawski, R. S., & Sliwinski, M. J. (2008). What’s so special about working memory? Psychological Science, 19(11), 1071–1077.

    Article  Google Scholar 

  • Moutafi, J., Furnham, A., & Crump, J. (2003). Demographic and personality predictors of intelligence: A study using the neo personality inventory and the Myers-Briggs type indicator. European Journal of Personality, 17(1), 79–94.

    Article  Google Scholar 

  • Neubauer, A. C., Grabner, R. H., Freudenthaler, H. H., Beckmann, J. F., & Guthke, J. (2004). Intelligence and individual differences in becoming neurally efficient. Acta Psycho. (Amst), 116(1), 55–74.

    Article  Google Scholar 

  • Nuthmann, A., & van der Meer, E. (2005). Time’s arrow and pupillary response. Psychophysiology, 42(3), 306–317.

    Article  Google Scholar 

  • Oberauer, K., Süß, H.-M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence. Intelligence, 36(6), 641–652.

    Google Scholar 

  • O’Boyle, M. W., Cunnington, R., Silk, T. J., Vaughan, D., Jackson, G., Syngeniotis, A., et al. (2005). Mathematically gifted male adolescents activate a unique brain network during mental rotation. Cognitive Brain Research, 25(2), 583–587.

    Article  Google Scholar 

  • Offenhaus, B. (1983). Individual differences in analogical reasoning. Thesis. Berlin: Humboldt-University.

  • Olkin, J., & Siotani, M. (1964). Asymptotic distribution functions of a correlation matrix. Stanford, CA: Stanford Laboratory for Quantitative Research in Education. Report No 6.

    Google Scholar 

  • Poldrack, R. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1998). The neural basis of visual skill learning: An fMRI study of mirror reading. Cerebral Cortex, 8(1), 1–10.

    Article  Google Scholar 

  • Porter, G., Troscianko, T., & Gilchrist, I. D. (2007). Effort during visual search and counting: Insights from pupillometry. The Quarterly Journal of Experimental Psychology, 60(2), 211–229.

    Article  Google Scholar 

  • Raine, A., Reynolds, C., Venables, P. H., & Mednick, S. A. (2002). Stimulation seeking and intelligence: A prospective longitudinal study. Journal of Personality and Social Psychology, 82(4), 663–674.

    Article  Google Scholar 

  • Raisig, S., Welke, T., Hagendorf, H., & van der Meer, E. (2007). Investigating dimensional organization in scripts using the pupillary response. Psychophysiology, 44(6), 864–873.

    Article  Google Scholar 

  • Rajkowski, J., Kubiak, P., & Aston-Jones, G. (1993). Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Society of Neurosciences, Abstracts, 19, 974.

    Google Scholar 

  • Raven, J. C. (1958). Advanced progressive matrices. London: Lewis.

    Google Scholar 

  • Royer, F. L. (1981). Detection of symmetry. Journal of Experimental Psychology: Human Perception and Performance, 7(6), 1186–1210.

    Article  Google Scholar 

  • Rypma, B., & Prabhakaran, V. (2009). When less is more and when more is more: the mediating roles of capacity and speed in brain-behavior efficiency. Intelligence, 37(2), 207–222.

    Google Scholar 

  • Rypma, B., Berger, J. S., Prabhakaran, V., Bly, B. M., Kimberg, D. Y., Biswal, B. B., et al. (2006). Neural correlates of cognitive efficiency. Neuroimage, 33(3), 969–979.

    Article  Google Scholar 

  • Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676–679.

    Article  Google Scholar 

  • Van der Meer, E. (1996). Memory and analogical reasoning. In D. Herrmann, C. McEvoy, C. Hertzog, P. Hertel, & M. K. Johnson (Eds.), Basic and applied memory research: practical applications (pp. 139–151). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Van der Meer, E., Beyer, R., Horn, J., Foth, M., Bornemann, B., Ries et al. (2010). Resource allocation and fluid intelligence: Insights from pupillometry. Psychophysiology, 47(1), 158–169.

  • Verney, S. P., Granholm, E., & Marshall, S. P. (2004). Pupillary responses on the visual backward masking task reflect general cognitive ability. International Journal of Psychophysiology, 52(1), 23–36.

    Article  Google Scholar 

  • Wager, T. D., Jonides, J., & Reading, S. (2004). Neuroimaging studies of shifting attention: a meta-analysis. Neuroimage, 22, 1679–1693.

    Article  Google Scholar 

  • Wagner, A. D., Maril, A., Bjork, R. A., & Schacter, D. L. (2001). Prefrontal Contributions to executive. Neuroimage, 14, 1337–1347.

    Article  Google Scholar 

  • Wartenburger, I., Heekeren, H. R., Preusse, F., Kramer, J., & van der Meer, E. (2009). Cerebral correlates of analogical processing and their modulation by training. Neuroimage, 48, 291–302.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the German Federal Ministry for Education and Research (BMBF, Programme: Neuroscience-Instruction-Learning). IW was funded by the Stifterverband fuer die Deutsche Wissenschaft, Claussen-Simon-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Bornemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornemann, B., Foth, M., Horn, J. et al. Mathematical cognition: individual differences in resource allocation. ZDM Mathematics Education 42, 555–567 (2010). https://doi.org/10.1007/s11858-010-0253-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-010-0253-x

Keywords

Navigation