Skip to main content

Advertisement

Log in

Building a virtual learning community of problem solvers: example of CASMI community

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Virtual multidisciplinary learning communities can become an important resource helping school teachers and students to foster a culture of communication, problem solving, and technology integration. Not only does the community concept virtually enlarge the mathematical learning space, it also opens several innovative ways to connect mathematics to other subjects, namely science and language arts. This article reflects on theoretical foundations of the new interactive virtual science and mathematics learning community, CASMI, as well as the first results of its implementation. The process of designing, enacting, and analyzing virtual problem solving communities, their technological, pedagogical and social aspects as a common ground for integrating mathematical, science and reading literacy into classroom practice and pre-service teacher training in an innovative and efficient way will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ADOP. (2007). Les effets de l’utilisation des ordinateurs portatifs indivuduels sur les apprentissages et les pratiques d’enseignement. Rapport final (Sous la direction de S. Blain), p.399. CRDE-Université de Moncton. Retrieved May 11, 2008 from http://download.microsoft.com/download/8/d/c/8dc3ebfe-6849-4534-a4b7-846a8c327874/Rapport.pdf.

  • Agosto, D. E. (2004). Design vs. content: A study of adolescent girls’ website design preferences. International Journal of Technology and Design Education, 14, 245–260.

    Article  Google Scholar 

  • Bednarz, N. (2004). Former les futurs enseignants à la didactique ou par la didactique? Maurice sachot et yves lenoir (dir.) les enseignants du primaire entre disciplinarité et interdisciplinarité : Quelle formation didactique? Sainte-Foy : Les Presses de l’Université Laval.

  • Bell, P., Hoadley, C. M., & Linn, M. C. (2004). Design-based research in education. In M. C. Linn, E. A. Davis & P. Bell (Eds.), Internet environments for science education. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. The Journal of the Learning Sciences, 13(1), 15–42.

    Article  Google Scholar 

  • Dede, C., Nelson, B., Ketelhut, D. J., Clarke, J., & Bowman, C. (2004). Design-based research strategies for studying situated learning in a multi-user virtual environment. Mahweh, NJ: Paper presented at the International conference on learning sciences.

    Google Scholar 

  • Design-based research collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–8.

    Article  Google Scholar 

  • Freiman, V., & Lirette-Pitre, N. (2005). Innovative approach of building connections between science and math didactics in pre-service teacher education using wiki-technology. In A. Beckmann, C. Michelsen & B. Sriraman (Eds.), Proceedings of the first international symposium of mathematics and its connections to the arts and sciences, 19th–21st May 2005 (pp. 162–173). Germany, Pädagogische Hochschule, Schwäbisch Gmünd University of Education, Verlag Franzbecker, Hildesheim, Berlin: Schwäbisch Gmünd.

    Google Scholar 

  • Freiman, V., Lirette-Pitre, N. (2006). WIKI MATH-SCIENCE : Un outil de débats interdidactiques pour la formation initiale des enseignantes et des enseignants au Nouveau-Brunswick. Paper presented at the Colloquvium Espace Mathématique Francophone, Sherbrooke, 27.052006–31.05.2006 (Proceedings are in press).

  • Freiman, V., & Lirette-Pitre, N. (2007). PISA2000 Case Study: New Brunswick. In Arbeitsgruppe internationale vergleichstudie (HRSG) Schullleistungen unde steurung des schulsystems in bundesstaat: Kanada und deutschland im vergleich. Waxmann, Muenster, New-York, Muenchen, Berlin, pp. 336–362.

  • Freiman, V., & Manuel, D. (2007). Apprentissage des mathématiques. Dans: ADOP (2007). Les effets de l’utilisation des ordinateurs portatifs indivuduels sur les apprentissages et les pratiques d’enseignement. Rapport final (Sous la direction de S. Blain), 399 pages. CRDE-Université de Moncton. Retrieved May 11, 2008 from http://download.microsoft.com/download/8/d/c/8dc3ebfe-6849-4534-a4b7-846a8c327874/Rapport.pdf.

  • Freiman, V., & Gandaho, I. (2005). New curriculum reform in action: new brunswick’s pre-service teachers communicate with schoolchildren on mathematical problems via Internet site CAMI. In Proceedings of world conference on educational multimedia, hypermedia and telecommunications 2005 (pp. 2816–2820). Norfolk, VA: AACE.

  • Freiman, V., Vézina, N. & Gandaho, I. (2005). New Brunswick pre-service teachers communicate with schoolchildren about mathematical problems: CAMI project. Zentralblatt fuer Didaktik der Mathematik, 37(3), 178-190.

    Google Scholar 

  • Freiman, V., Vézina, N. & Langlais, M. (2005). Le chantier d’apprentissages mathématiques interactifs (CAMI) accompagne la réforme au Nouveau-Brunswick: Mathématique virtuelle à l’attention du primaire. Retrieved May 11, 2008 from: http://spip.cslaval.qc.ca/mathvip/rubrique.php3?id_rubrique=18.

  • Jonnaert, Ph., & Vander Borght, C. (2004). Créer les conditions d’apprentissage. Un cadre de référence pour la formation didactique des enseignants, Bruxelles: De Boeck-Université.

    Google Scholar 

  • Klotz, G. (2003). Math: Calculating the benefits of cyber sessions. In D. T. Gordon (Ed.), The digital classroom: How technology is changing the way we teach and learn. Harward Education Letter. p. 184.

  • Loranger, H., & Nielson, J. (2005). Teenagers on the web: 60 usability guidelines for creating compelling websites for teens. Fremont, CA: Nielsen Norman group.

    Google Scholar 

  • Lynch, P. J., & Horton, S. (2001). Web style guide (2nd ed.). New Haven: Yale University Press.

    Google Scholar 

  • Lyons, R., & Lyons, M. (1989). Défi mathématique 4. Mondia: Montréal.

    Google Scholar 

  • McDonald, N. (2004). Chess: The art of logical thinking: from the first move to the last. Batsford, 253 pages.

  • Meissner, H. (2005). Creativity and mathematics education. Paper presented at the 3rd east asia regional conference on mathematics education. Retrieved May 11, 2008 from http://www.math.ecnu.edu.cn/earcome3/sym1/sym104.pdf.

  • MENB. (2003). Programmes d’études en mathématiques. Ministère de l’Éducation du Nouveau-Brunswick.

  • Nason, R. A., & Woodruff, E. (2004). Online collaborative learning in mathematics: Some necessary innovations. In T. Roberts (Ed.), Online collaborative learning: theory and practice (pp. 103–131). London: Infosci.

    Google Scholar 

  • Nielson, J., & Loranger, H. (2006). Prioritizing web usability. Upper Saddle River, NJ: New Riders Press.

    Google Scholar 

  • OCDE. (2000). Measuring student knowledge and skills: a new framework for assessment. Retrieved May 11, 2008 from http://www.pisa.oecd.org/dataoecd/45/32/33693997.pdf.

  • Taurisson. (2000). Les communautes virtuelles de recherche en éducation. In Pallascio, R. & Lafortune, L. (Eds.) Pour une pensée réflexive en éducation (pp. 233–244). Presses Universitaires du Québec.

  • Piggott, J. (2004). Developing a framework for mathematics enrichment; conference proceedings, Creative Thinking. Trinidad: University of the West Indies.

    Google Scholar 

  • Poirier, L. (2001). Enseigner les maths au primaire: Notes didactiques. ERPI.

  • Renninger K. Ann, & Wesley Shumar (Eds.) (2002). Building virtual communities: learning and change in cyberspace, England: Cambridge University Press.

  • Sheffield, L. (Éd.) (1998). Development of mathematically promising students. NCTM.

  • Sheffield, L. (2004). Extending the challenge in mathematics: Developing mathematical promise in K-8. Corwin Press.

  • Shneiderman, B., & Plaisant, C. (2005). Designing the user interface: strategies for effective human–computer interaction (4th ed.). Boston: Pearson Addison Wesley.

    Google Scholar 

  • Statistics Canada (2000, 2003, 2006) measuring up: Canadian results of the OECD PISA study. Retrieved May 11, 2008 from http://www.pisa.gc.ca/publications_e.shtml.

  • Vézina, N., & Langlais, M. (2002). Résolution de problèmes, communication mathématique et TIC : l’expérience du projet CAMI. Nouvelles de l’AEFNB, 33(5), 9–12.

    Google Scholar 

  • Wang, F., & Hannafin, M. (2005). Design-based research and technology-enhanced learning systems. Educational Technology Research & Development, 53(4), 1042–1629.

    Article  Google Scholar 

  • Zimmermann, B., & Campillo, M. (2003). Motivating self-regulated problem solvers. In J. Davidson & R. Sternberg (Eds.), The psychology of problem solving. London: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgments

This publication has been supported by the Canadian Natural Sciences and Engineering Research Council (CRYSTAL Atlantique Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Freiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freiman, V., Lirette-Pitre, N. Building a virtual learning community of problem solvers: example of CASMI community. ZDM Mathematics Education 41, 245–256 (2009). https://doi.org/10.1007/s11858-008-0118-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-008-0118-8

Keywords

Navigation