Skip to main content
Log in

Free group representations from vector-valued multiplicative functions. III

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let π be an irreducible unitary representation of a finitely generated non-abelian free group Γ; suppose π is weakly contained in the regular representation. In 2001 the first and third authors conjectured that such a representation must be either odd or monotonous or duplicitous. In 2004 they introduced the class of multiplicative representations: this is a large class of representations obtained by looking at the action of Γ on its Cayley graph. In the second paper of this series we showed that some of the multiplicative representations were monotonous. Here we show that all the other multiplicative representations are either odd or duplicitous. The conjecture is therefore established for multiplicative representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Boyer and Ł. Garncarek, Asymptotic Schur orthogonality in hyperbolic groups with application to monotony, Transactions of the American Mathematical Society 371 (2019), 6815–6841.

    Article  MathSciNet  Google Scholar 

  2. A. Boyer, G. Link and Ch. Pittet, Ergodic boundary representations, Ergodic Theory and Dynamical Systems 39 (2019), 2017–2047.

    Article  MathSciNet  Google Scholar 

  3. A. Boyer and L. A. Pinochet, An ergodic theorem for the quasi-regular representation of the free group, Bulletin of the Belgian Mathematical Society. Simon Stevin 24 (2017), 243–255.

    Article  MathSciNet  Google Scholar 

  4. C. Cecchini and A. Figà-Talamanca, Projections of uniqueness for Lp (G), Pacific Journal of Mathematics 51 (1974), 37–47.

    Article  MathSciNet  Google Scholar 

  5. K. R. Davidson, C-algebras by Example, Fields Institute Monographs, Vol. 6, American Mathematical Society, Providence, RI, 1996.

    Google Scholar 

  6. A. Figà-Talamanca and A. M. Picardello, Spherical functions and harmonic analysis on free groups, Journal of Functional Analysis 47 (1982), 281–304.

    Article  MathSciNet  Google Scholar 

  7. A. Figà-Talamanca and T. Steger, Harmonic analysis for anisotropic random walks on homogeneous trees, Memoirs of the American Mathematical Society 531 (1994).

  8. U. Haagerup, An example of a nonnuclear C-algebra which has the metric approximation property, Inventiones Mathematicae 50 (1979), 279–293.

    Article  MathSciNet  Google Scholar 

  9. W. Hebisch, M. G. Kuhn and T. Steger, Free group representations: Duplicity and oddity on the boundary, Transactions of the American Mathematical Society 375 (2022), 1825–1860.

    Article  MathSciNet  Google Scholar 

  10. A. Iozzi, M. G. Kuhn and T. Steger, Stability properties of multiplicative representations of the free group, Transactions of the American Mathematical Society 371 (2019), 8699–8731.

    Article  MathSciNet  Google Scholar 

  11. M. G. Kuhn, S. Saliani and T. Steger, Free group representations from vector-valued multiplicative functions, II, Mathematische Zeitschrift 284 (2016), 1137–1162.

    Article  MathSciNet  Google Scholar 

  12. M. G. Kuhn and T. Steger, Multiplicative functions on free groups and irreducible representations, Pacific Journal of Mathematics 169 (1995), 311–334.

    Article  MathSciNet  Google Scholar 

  13. M. G. Kuhn and T. Steger, More irreducible boundary representations of free groups, Duke Mathematical Journal 82 (1996), 381–436.

    Article  MathSciNet  Google Scholar 

  14. M. G. Kuhn and T. Steger, Monotony of certain free group representations, Journal of Functional Analysis 179 (2001), 1–17.

    Article  MathSciNet  Google Scholar 

  15. M. G. Kuhn and T. Steger, Free group representations from vector-valued multiplicative functions, I, Israel Journal of Mathematics 144 (2004), 317–341.

    Article  MathSciNet  Google Scholar 

  16. L. De Michele and A. Figà-Talamanca, Positive definite functions on free groups, American Journal of Mathematics 102 (1980), 503–509.

    Article  MathSciNet  Google Scholar 

  17. W. L. Paschke, Pure eigenstates for the sum of generators of the free group, Pacific Journal of Mathematics 197 (2001), 151–171.

    Article  MathSciNet  Google Scholar 

  18. W. L. Paschke, Some irreducible free group representations in which a linear combination of the generators has an eigenvalue, Journal of the Australian Mathematical Society 72 (2002), 257–286.

    Article  MathSciNet  Google Scholar 

  19. C. Pensavalle and T. Steger, Tensor products with anisotropic principal series representations of free groups, Pacific Journal of Mathematics 173 (1996), 181–202.

    Article  MathSciNet  Google Scholar 

  20. T. Pytlik and R. Szwarc, An analytic family of uniformly bounded representations of free groups, Acta Mathematica 157 (1986), 287–309.

    Article  MathSciNet  Google Scholar 

  21. W. Rudin, Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1991.

    Google Scholar 

  22. M. Takesaki, Theory of Operator Algebras II, Encyclopaedia of Mathematical Sciences, Vol. 125, Springer, Berlin, 2003.

    Book  Google Scholar 

  23. H. Yoshizawa, Some remarks on unitary representations of the free group, Osaka Mathematical Journal 3 (1951), 55–63.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewer whose constructive comments/suggestions helped improve and clarify the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Saliani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhn, M.G., Saliani, S. & Steger, T. Free group representations from vector-valued multiplicative functions. III. Isr. J. Math. 258, 339–373 (2023). https://doi.org/10.1007/s11856-023-2474-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2474-z

Navigation