Skip to main content
Log in

Highly irregular separated nets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In 1998 Burago and Kleiner and (independently) McMullen gave examples of separated nets in Euclidean space which are bilipschitz non-equivalent to the integer lattice. We study weaker notions than bilipschitz equivalence and demonstrate that such notions also distinguish between separated nets. Put differently, we find occurrences of particularly strong divergence of separated nets from the integer lattice. Our approach generalises that of Burago and Kleiner and McMullen which takes place largely in a continuous setting. Existence of irregular separated nets is verified via the existence of non-realisable density functions ρ: [0,1]d → (0, ∞). In the present work we obtain stronger types of non-realisable densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aliste-Prieto, D. Coronel and J.-M. Gambaudo, Linearly repetitive Delone sets are rectifiable, Annales de l’Institut Henri Poincaré C, Analyse non linéaire 30 (2013), 275–290.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Avinyó, J. Solà-Morales and M. València, On maps with given Jacobians involving the heat equation, Zeitschrift für angewandte Mathematik und Physik 54 (2003), 919–936.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Baake and U. Grimm, Aperiodic Order. Vol. 1, Encyclopedia of Mathematics and its Applications, Vol. 149, Cambridge University Press, Cambridge, 2013.

    Book  MATH  Google Scholar 

  4. M. Baake and U. Grimm, Aperiodic Order. Vol. 2, Encyclopedia of Mathematics and its Applications, Vol. 166, Cambridge University Press, Cambridge, 2017.

    Book  MATH  Google Scholar 

  5. M. Baake and R. V. Moody, Directions in Mathematical Quasicrystals, CRM Monograph Series, Vol. 13, American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  6. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, Vol. 48, American Mathematical Society, Providence, RI, 1998.

    MATH  Google Scholar 

  7. D. Burago and B. Kleiner, Separated nets in Euclidean space and Jacobians of biLipschitz maps, Geometric and Functional Analysis 8 (1998), 273–282.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Burago and B. Kleiner, Rectifying separated nets, Geometric and Functional Analysis 12 (2002), 80–92.

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Cornulier and P. de la Harpe, Metric Geometry of Locally Compact Groups, Tracts in Mathematics, Vol. 25, European Mathematical Society, Zürich, 2016

    Book  MATH  Google Scholar 

  10. M. I. Cortez and A. Navas, Some examples of repetitive, nonrectifiable Delone sets, Geometry & Topology 20 (2016), 1909–1939.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Cupini, B. Dacorogna and O. Kneuss, On the equation det ∇u = f with no sign hypothesis, Calculus of Variations and Partial Differential Equations 36 (2009), 251–283.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian determinant, Annales de l’institut Henri Poincaré. Analyse non linéaire 7 (1990), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin—Heidelberg, 1985.

    Book  MATH  Google Scholar 

  14. C. Druţu and M. Kapovich, Geometric Group Theory, Colloquium Publications, Vol. 63, American Mathematical Society, Providence, RI, 2018.

    MATH  Google Scholar 

  15. M. Dymond and V. Kaluža, Divergence of separated nets with respect to displacement equivalence, https://arxiv.org/abs/2102.13046.

  16. M. Dymond, V. Kaluža and E. Kopecká, Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant, Geometric and Functional Analysis 28 (2018), 589–644.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. I. Garber, On equivalence classes of separated nets, Modelirovanie i Analiz Informatsionnykh Sistem 16 (2009), 109–118.

    Google Scholar 

  18. M. L. Gromov, Asymptotic invariants of infinite groups, in Geometric Group Theory. Vol. 2, London Mathematical Society Lecture Note Series, Vol. 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.

    Google Scholar 

  19. B. Hasselblatt and A. Katok, Principal structures, in Handbook of Dynamical Systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1–203.

    MATH  Google Scholar 

  20. A. Haynes, M. Kelly and B. Weiss, Equivalence relations on separated nets arising from linear toral flows, Proceedings of the London Mathematical Society 109 (2014), 1203–1228.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Laczkovich, Uniformly Spread Discrete Sets ind, Journal of the London Mathematical Society s2–46 (1992), 39–57.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. N. Magazinov, The family of bi-Lipschitz classes of Delone sets in Euclidean space has the cardinality of the continuum, Proceedings of the Steklov Institute of Mathematics 275 (2011), 78–89.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Matoušek and A. Naor (eds.), Open Problems on Low-Distortion Embeddings of Finite Metric Spaces, 2011 (last revision), kam.mff.cuni.cz/∼matousek/metrop.ps.

  24. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics, Vol. 44, Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  25. C. T. McMullen, Lipschitz maps and nets in Euclidean space, Geometric and Functional Analysis 8 (1998), 304–314.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Moser, On the volume elements on a manifold, Transactions of the American Mathematical Society 120 (1965), 286–294.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. M. Reimann, Harmonische Funktionen und Jacobi—Determinanten von Diffeomorphismen, Commentarii Mathematici Helvetici 47 (1972), 397–408.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Rivière and D. Ye, Resolutions of the prescribed volume form equation, Nonlinear Differential Equations and Applications 3 (1996), 323–369.

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Solomon, Substitution tilings and separated nets with similarities to the integer lattice, Israel Journal of Mathematics 181 (2011), 445–460.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Solomon, A simple condition for bounded displacement, Journal of Mathematical Analysis and Applications 414 (2014), 134–148.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Viera, Densities non-realizable as the Jacobian of a 2-dimensional bi-Lipschitz map are generic, Journal of Topology and Analysis 10 (2018), 933–940.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Ye, Prescribing the Jacobian determinant in Sobolev spaces, Annales de l’institut Henri Poincaré (C) Analyse non linéaire 11 (1994), 275–296.

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Zajíček, On σ-porous sets in abstract spaces, Abstract and Applied Analysis 2005 (2005), 509–534.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their very careful reading of the paper and many comments and suggestions that greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dymond.

Additional information

This work was done while both authors were employed at the University of Innsbruck and enjoyed the full support of Austrian Science Fund (FWF): P 30902-N35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dymond, M., Kaluža, V. Highly irregular separated nets. Isr. J. Math. 253, 501–554 (2023). https://doi.org/10.1007/s11856-022-2448-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2448-6

Navigation