Skip to main content
Log in

On the equation \({{\rm det}\,\nabla{u}=f}\) with no sign hypothesis

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove existence of \({u\in C^{k}(\overline{\Omega};\mathbb{R}^{n})}\) satisfying

$$\left\{\begin{array}{ll} det\nabla u(x) =f(x) \, x\in \Omega\\ u(x) =x \quad\quad\quad\quad x\in\partial\Omega\end{array}\right.$$

where k ≥ 1 is an integer, \({\Omega}\) is a bounded smooth domain and \({f\in C^{k}(\overline{\Omega}) }\) satisfies

$$\int\limits_{\Omega}f(x) dx={\rm meas} \Omega$$

with no sign hypothesis on f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banyaga A.: Formes-volume sur les variétés à bord. Enseignement Math. 20, 127–131 (1974)

    MATH  MathSciNet  Google Scholar 

  2. Burago D., Kleiner B.: Separated nets in Euclidean space and Jacobian of biLipschitz maps. Geom. Funct. Anal. 8, 273–282 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dacorogna B.: A relaxation theorem and its applications to the equilibrium of gases. Arch. Ration. Mech. Anal. 77, 359–386 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dacorogna B.: Existence and regularity of solutions of dw = f with Dirichlet boundary conditions. Nonlinear Probl. Math. Phys. Relat. Topics 1, 67–82 (2002)

    MathSciNet  Google Scholar 

  5. Dacorogna B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, Berlin (2007)

    Google Scholar 

  6. Dacorogna B., Moser J.: On a partial differential equation involving the Jacobian determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 1–26 (1990)

    MATH  MathSciNet  Google Scholar 

  7. Fonseca I., Gangbo W.: Degree Theory in Analysis and Applications. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  8. Kneuss, O.: Phd Thesis

  9. Mc Mullen C.T.: Lipschitz maps and nets in Euclidean space. Geom. Funct. Anal. 8, 304–314 (1998)

    Article  MathSciNet  Google Scholar 

  10. Meisters G.H., Olech C.: Locally one-to-one mappings and a classical theorem on schlicht functions. Duke Math. J. 30, 63–80 (1970)

    Article  MathSciNet  Google Scholar 

  11. Moser J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)

    Article  MATH  Google Scholar 

  12. Reimann H.M.: Harmonische Funktionen und Jacobi-Determinanten von Diffeomorphismen. Comment. Math. Helv. 47, 397–408 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rivière T., Ye D.: Resolutions of the prescribed volume form equation. NoDEA. Nonlinear Differ. Equ. Appl. 3, 323–369 (1996)

    Article  MATH  Google Scholar 

  14. Schwartz J.T.: Nonlinear Functional Analysis. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  15. Tartar, L.: unpublished (1978)

  16. Ye D.: Prescribing the Jacobian determinant in Sobolev spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 11, 275–296 (1994)

    MATH  Google Scholar 

  17. Zehnder, E.: Note on smoothing symplectic and volume preserving diffeomorphisms. Lecture Notes in Mathematics, vol. 597, pp. 828–855. Springer, Berlin (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Dacorogna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cupini, G., Dacorogna, B. & Kneuss, O. On the equation \({{\rm det}\,\nabla{u}=f}\) with no sign hypothesis. Calc. Var. 36, 251–283 (2009). https://doi.org/10.1007/s00526-009-0228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-009-0228-3

Mathematics Subject Classification (2000)

Navigation