Skip to main content
Log in

Expander spanning subgraphs with large girth

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We conjecture that in any finite graph with large Cheeger constant we can delete a proportion of edges in such a way that the remaining graph has large girth and retains good expansion properties. We prove this when the expansion is large enough in terms of the maximum degree. The condition on expansion covers, for example, large random d-regular graphs. Our proof relies on the Lovász Local Lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Abért, Y. Glasner and B. Virág, The measurable Kesten theorem, Annals of Probability 44 (2016), 1601–1646

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Alon, S. Ganguly and N. Srivastava, High-girth near-Ramanujan graphs with localized eigenvectors, Israel Journal of Mathematics 246 (2021), 1–20

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Anantharaman and E. Le Masson, Quantum ergodicity on large regular graphs, Duke Mathematical Journal 164 (2015), 723–765

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Arzhantseva and A. Biswas, Logarithmic girth expander graphs of \({\rm{S}}{{\rm{L}}_n}\left( {{\mathbb{F}_p}} \right)\), Journal of Algebraic Combinatorics 56 (2022), 691–723.

    Article  MATH  Google Scholar 

  5. I. Benjamini and O. Schramm, Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant, Geometric and Functional Analysis 7 (1997), 403–419.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Bilu and N. Linial, Lifts, discrepancy and nearly optimal spectral gap, Combinatorica 26 (2006): 495–519.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bourgain and A. Gamburd, Uniform expansion bounds for Cayley graphs of \({\rm{S}}{{\rm{L}}_2}\left( {{\mathbb{F}_p}} \right)\), Annals of Mathematics 167 (2008), 625–642.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bourgain and P. Varjú, Expansion in SLd(ℤ/qℤ), q arbitrary, Inventiones Mathematicae 188 (2012), 151–173.

    Article  MathSciNet  Google Scholar 

  9. E. Breuillard and T. Gelander, A topological Tits alternative, Annals of Mathematics 166 (2007), 427–474.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Carsten, Girth in graphs, Journal of Combinatorial Theory. Series B 35 (1983), 129–141.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. A. Deuber, M. Simonovits and V. T. Sós, A note on paradoxical metric spaces, Studia Scientiarum Mathematicarum Hungarica (1995), 17–23; see http://www.renyi.hu/∼miki/walter07.pdf for an extended version.

  12. J. Dodziuk, Combinatorial Laplacians and isoperimetgric inequality, in From Local Times to Global Geometry, Control and Physics (Coventry, 1984/85), Pitman Research Notes in Mathematics Series, Vol. 150, Longman Scientific and Technical, Harlow, 1986, pp. 68–74.

    Google Scholar 

  13. P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, Colloquia Mathematica Societatis János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 609–627.

    Google Scholar 

  14. M. Fraczyk and W. van Limbeek, Heat kernels are not uniform expanders, https://arxiv.org/abs/1905.13584.

  15. D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann’s problem, Inventiones Mathematicae 177 (2009), 533–540.

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Glasner, Ramanujan graphs with small girth, Combinatorica 23 (2003), 487–502.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bulletin of the American Mathematical Society 43 (2006), 439–561.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Houdayer, Invariant percolation and measured theory of nonamenable groups (after Gaboriau-Lyons, Ioana, Epstein), Astérisque 348 (2012), 339–374.

    MathSciNet  MATH  Google Scholar 

  19. G. Kun, Expanders have a spanning Lipshitz subgraph with large girth, https://arxiv.org/abs/1303.4982.

  20. A. Lubotzky, High dimensional expanders, in Proceedings of the International Congress of Mathematicians, Rio de Janeiro 2018. Vol. I. Plenary Lectures, World Scientific, Hackensack, NJ, 2018, pp. 705–730.

    MATH  Google Scholar 

  21. R. Moser and G. Tardos, A constructive proof of the general Lovász Local Lemma, Journal of the ACM 57 (2010), Article no. 11

  22. D. Puder, Expansion of random graphs: New proofs, new results, Inventiones Mathematicae 201 (2015), 845–908.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Raghavendra and D. Steurer, Graph expansion and the unique games conjecture, in STOC’10—Proceedings of the 2010 ACM International Symposium on Theory of Computing, ACM, New York, 2010, pp. 755–764.

    MATH  Google Scholar 

  24. D. Spielman and N. Srivastava, Graph sparsification by effective resistances, SIAM Journal on Computing 40 (2011), 1913–1926.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The authors thank Gábor Pete for encouraging this collaboration, to Elad Tzalik for his suggestions to improve the paper and to Merav Parter for her comments on possible applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai Benjamini.

Additional information

To Benjy Weiss

The first author thanks the Israeli Science Foundation for support.

The third author’s work on the project leading to this application has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 741420), from the ÚNKP-20-5 New National Excellence Program of the Ministry of Innovation and Technology from the source of the National Research, Development and Innovation Fund and from the János Bolyai Scholarship of the Hungarian Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benjamini, I., Fraczyk, M. & Kun, G. Expander spanning subgraphs with large girth. Isr. J. Math. 251, 156–172 (2022). https://doi.org/10.1007/s11856-022-2446-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2446-8

Navigation