Skip to main content
Log in

Juxtaposing combinatorial and ergodic properties of large sets of integers

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The classical approach of Furstenberg allows one to associate with any large set E ⊆ ℤ a dynamical system \({\mathbb{X}_E} = \left( {X,{\cal B},\mu ,T} \right)\) which “encodes” the combinatorial properties of E via the multiple recurrence properties of the transformation T. While one can always assume without loss of generality that \({\mathbb{X}_E}\) is ergodic, the requirement of ergodicity of T2 puts rather stringent combinatorial constraints on the set E. We undertake a close study of the connection between the combinatorial richness of large sets in ℤ and ergodic properties of the corresponding system \({\mathbb{X}_E}\). In particular, we characterize, in combinatorial terms, totally ergodic (resp. weakly mixing) sets E, i.e., sets for which T is totally ergodic (resp. weakly mixing). This leads to numerous new combinatorial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. Bergelson, Weakly mixing PET, Ergodic Theory and Dynamical Systems 7 (1987), 337–349.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Bergelson, Ergodic Ramsey theory—an update, in Ergodic Theory of Zd Actions (Warwick, 1993–1994), London Mathematical Society Lecture Note Series, Vol. 228, Cambridge University Press, Cambridge, 1996, pp. 1–61.

    Google Scholar 

  3. V. Bergelson, The multifarious Poincaré recurrence theorem, in Descriptive Set Theory and Dynamical Systems (Marseille-Luminy, 1996), London Mathematical Society Lecture Note Series, Vol. 277, Cambridge University Press, Cambridge, 2000, pp. 31–57.

    Chapter  Google Scholar 

  4. V. Bergelson, Combinatorial and Diophantine applications of ergodic theory, in Handbook of Dynamical Systems. Vol. 1B, Elsevier, Amsterdam, 2006, pp. 745–869.

    MATH  Google Scholar 

  5. M. Beiglböck, V. Bergelson and A. Fish, Sumset phenomenon in countable amenable groups, Advances in Mathematics 223 (2010), 416–432.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Bergelson and A. F. Moragues, An ergodic correspondence principle, invariant means and applications, Israel Journal of Mathematics 245 (2021), 921–962.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Bergelson and A. Ferré Moragues, Uniqueness of a Furstenberg system, Proceedings of the American Mathematical Society 149 (2021), 2983–2997.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences, Inventiones Mathematicae 160 (2005), 261–303.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Bergelson and I. J. Håland Knutson, Weak mixing implies weak mixing of higher orders along tempered functions, Ergodic Theory and Dynamical Systems 29 (2009), 1375–1416.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, Journal of the American Mathematical Society 9 (1996), 725–753.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Bergelson and A. Leibman, Cubic averages and large intersections, in Recent Trends in Ergodic Theory and Dynamical Systems, Contemporary Mathematics, Vol. 631, American Mathematical Society, Providence, RI, 2015, pp. 5–19.

    MATH  Google Scholar 

  12. V. Bergelson, A. Leibman and E. Lesigne, Complexities of finite families of polynomials, Weyl systems, and constructions in combinatorial number theory, Journal d’Analyse Mathématique 103 (2007), 47–92.

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Bergelson, A. Leibman and Y. Son, Joint ergodicity along generalized linear functions, Ergodic Theory and Dynamical Systems 36 (2016), 2044–2075.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Bergelson and R. McCutcheon, An ergodic IP polynomial Szemerédi theorem, Memoirs of the American Mathematical Society 146 (2000).

  15. V. Bergelson, G. Kolesnik and Y. Son, Uniform distribution of subpolynomial functions along primes and applications, Journal d’Analyse Mathématique 137 (2019), 135–187.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Bergelson, I. J. Håland Knutson and Y. Son, An extension of Weyl’s equidistribution theorem to generalized polynomials and applications, International Mathematics Research Notices 2021 (2021), 14965–15018.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Bergelson and J. Vandehey, A hot spot proof of the generalized Wall theorem, American Mathematical Monthly 126 (2019), 876–890.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Downarowicz, Entropy in Dynamical Systems, New Mathematical Monographs, Vol. 18, Cambridge University Press, Cambridge, 2011.

    Book  MATH  Google Scholar 

  19. A. Fish, Ramsey properties of subsets of ℕ, Ph.D. Thesis, The Hebrew University of Jerusalem, 2007.

  20. A. Fish, Polynomial largeness of sumsets and totally ergodic sets, Online Journal of Analytic Combinatorics 5 (2010), Article no. 6.

  21. N. Frantzikinakis and B. Host, The logarithmic Sarnak conjecture for ergodic weights, Annals of Mathematics 187 (2018), 869–931.

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Frantzikinakis and B. Host, Furstenberg systems of bounded multiplicative functions and applications, International Mathematics Research Notices 2021 (2021), 6077–6107.

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Frantzikinakis, B. Host and B. Kra, The polynomial multidimensional Szemerédi theorem along shifted primes, Israel Journal of Mathematics 194 (2013), 331–348.

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Frantzikinakis and B. Kra, Ergodic averages for independent polynomials and applications, Journal of the London Mathematical Society 74 (2006), 131–142.

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Frantzikinakis, The structure of strongly stationary systems, Journal d’Analyse Mathématique 93 (2004), 359–388.

    Article  MathSciNet  MATH  Google Scholar 

  26. N. Frantzikinakis, Multiple ergodic averages for three polynomials and applications, Transactions of the American Mathematical Society 360 (2008), 5435–5475.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Furstenberg, Prediction theory, Ph.D. Thesis, Princeton University, Princeton, NJ, 1958.

    MATH  Google Scholar 

  28. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, Journal d’Analyse Mathématique 31 (1977), 204–256.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981.

    Book  MATH  Google Scholar 

  30. H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett theorem, Journal d’Analyse Mathématique 57 (1991), 64–119.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Furstenberg and B. Weiss, Markov processes and Ramsey theory for trees, Combinatorics, Probability and Computing 12 (2003), 547–563.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Green and T. Tao, Linear equations in primes, Annals of Mathematics 171 (2010), 1753–1850.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Helson, Harmonic Analysis, Addison-Wesley, Advanced Book Program, Reading, MA, 1983.

    MATH  Google Scholar 

  34. R. I. Jewett, The prevalence of uniquely ergodic systems, Journal of Mathematics and Mechanics 19 (1969/1970), 717–729.

    MathSciNet  MATH  Google Scholar 

  35. W. Krieger, On unique ergodicity, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, University of California Press, Berkeley, CA, 1972, pp. 327–346.

    Google Scholar 

  36. J. Moreira and F. K. Richter, A spectral refinement of the Bergelson-Host-Kra decomposition and new multiple ergodic theorems, Ergodic Theory and Dynamical Systems 39 (2019), 1042–1070.

    Article  MathSciNet  MATH  Google Scholar 

  37. I. Niven, Irrational Numbers, The Carus Mathematical Monographs, Vol. 11, The Mathematical Association of America; distributed by John Wiley and Sons, New York, 1956.

    Book  MATH  Google Scholar 

  38. M. Queffélec, Substitution Dynamical Systems—Spectral Analysis, Lecture Notes in Mathematics, Vol. 1294, Springer, Berlin, 2010.

    Book  MATH  Google Scholar 

  39. E. A. Robinson,Jr., Symbolic dynamics and tilings ofd, in Symbolic Dynamics and Its Applications, 81–119, Proceedings of Symposia in Applied Mathematics, Vol. 60, American Mathematical Society, Providence, RI, 2004, pp. 81–119.

    Chapter  MATH  Google Scholar 

  40. K. Roth, Sur quelques ensembles d’entiers, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 234 (1952), 388–390.

    MathSciNet  MATH  Google Scholar 

  41. T. de la Rue, An introduction to joinings in ergodic theory, Discrete and Continuous Dynamical Systems 15 (2006), 121–142.

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 (1975), 199–245.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Viana, Ergodic theory of interval exchange maps, Revista Matemática Complutense 19 (2006), no. 1, 7–100.

    MathSciNet  Google Scholar 

  44. B. Weiss, Single Orbit Dynamics, CBMS Regional Conference Series in Mathematics, Vol. 95, American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  45. T. D. Wooley and T. D. Ziegler, Multiple recurrence and convergence along the primes, American Journal of Mathematics 134 (2012), 1705–1732.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Bergelson.

Additional information

Dedicated to Benjy Weiss upon reaching g’vurot.

H. Furstenberg and his collaborators showed how ideas from dynamical systems could be used to obtain old and new results [of combinatorial nature]. The basic paradigm involved interpreting the object under investigation as a single orbit of an entire dynamical system. This study of patterns in large sets has developed into a broad discipline and has injected powerful new methods into basic combinatorial questions.

[In] single orbit dynamics … the main object of interest is a single orbit and its properties and the global dynamics is a tool. The reverse situation, in which the main object of interest is the global system and the individual orbit is but a tool is also not uncommon. We call this the principle of one for all… This means describing a global system as the orbit closure of a single orbit. This is a powerful tool in the construction of a variety of examples

—Benjamin Weiss, Single Orbit Dynamics, [We].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergelson, V., Moragues, A.F. Juxtaposing combinatorial and ergodic properties of large sets of integers. Isr. J. Math. 251, 173–238 (2022). https://doi.org/10.1007/s11856-022-2441-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2441-0

Navigation