Skip to main content
Log in

Complexities of finite families of polynomials, Weyl systems, and constructions in combinatorial number theory

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We introduce two notions of complexity of a system of polynomials p 1,..., p r ∈ ℤ[n] and apply them to characterize the limits of the expressions of the form \(\mu (A_0 \cap T^{ - p_1 (n)} A_1 \cap \cdots \cap T^{ - p_r (n)} A_r )\) where T is a skew-product transformation of a torus \(\mathbb{T}^d \) and \(A_i \subseteq \mathbb{T}^d \) are measurable sets. The dynamical results obtained allow us to construct subsets of integers with specific combinatorial properties related to the polynomial Szemerédi theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems 7 (1987), 337–349.

    MATH  MathSciNet  Google Scholar 

  2. V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), 725–753.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Bergelson and R. McCutcheon, Uniformity in polynomial Szemerédi theorem, in Ergodic Theory of ℤ d-actions, Cambridge Univ. Press, Cambridge, 1996, pp. 273–296.

    Google Scholar 

  4. N. Frantzikinakis, Multiple ergodic averages for three polynomials and applications, Trans. Amer. Math. Soc., to appear. (Arxiv, reference math.DS/0606567.)

  5. N. Frantzikinakis and B. Kra, Polynomial averages converge to the product of integrals, Israel J. Math. 148 (2005), 267–276.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256.

    MATH  MathSciNet  Google Scholar 

  7. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, 1981.

    MATH  Google Scholar 

  8. H. Furstenberg, Nonconventional ergodic averages, in The Legacy of John von Neuman, Amer. Math. Soc., Providence, RI, 1990, pp. 43–56.

    Google Scholar 

  9. B. Host and B. Kra, Non-conventional ergodic averages and nilmanifolds, Annals of Math. (2) 161 (2005), 397–488.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Host and B. Kra, Convergence of polynomial ergodic averages, Israel J. Math. 149 (2005), 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables Israel J. Math. 146 (2005), 303–322.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Leibman, Host-Kra and Ziegler factors, and convergence of multiple averages, appendix to “ Combinatorial and Diophantine Applications of Ergodic Theory” by V. Bergelson, in Handbook of Dynamical Systems, Vol. 1B, B. Hasselblatt and A. Katok, eds., Elsevier, Amsterdam, 2006, pp. 841–853.

    Google Scholar 

  13. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199–245.

    MATH  MathSciNet  Google Scholar 

  14. H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313–352.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), 53–97.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bergelson.

Additional information

Bergelson and Leibman were supported by NSF grants DMS-0345350 and DMS-0600042.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergelson, V., Leibman, A. & Lesigne, E. Complexities of finite families of polynomials, Weyl systems, and constructions in combinatorial number theory. J Anal Math 103, 47–92 (2007). https://doi.org/10.1007/s11854-008-0002-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-008-0002-z

Keywords

Navigation