Skip to main content
Log in

On the pointwise converse of Fatou’s theorem for Euclidean and real hyperbolic spaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this article, we extend a result of L. Loomis and W. Rudin, regarding boundary behavior of positive harmonic functions on the upper half space ℝ n+1+ . We show that similar results remain valid for more general approximate identities. We apply this result to prove a result regarding boundary behavior of certain nonnegative eigenfunctions of the Laplace-Beltrami operator on real hyperbolic space ℍn. We shall also prove a generalization of a result regarding large time behavior of a solution of the heat equation proved in [17]. We use this result to prove a result regarding asymptotic behavior of certain eigenfunctions of the Laplace-Beltrami operator on real hyperbolic space ℍn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Anker, E. Damek and C. Yacoub, Spherical analysis on harmonic AN groups, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV 23 (1996), 643–679.

    MathSciNet  MATH  Google Scholar 

  2. S. Ben Saïd, T. Oshima and N. Shimeno, Fatou’s theorems and Hardy-type spaces for eigenfunctions of the invariant differential operators on symmetric spaces, International Mathematics Research Notices 2003 (2003), 915–931.

    Article  MathSciNet  Google Scholar 

  3. J. Brossard and L. Chevalier, Problème de Fatou ponctuel et dérivabilité des mesures, Acta Mathematica 164 (1990), 237–263.

    Article  MathSciNet  Google Scholar 

  4. J. J. Carmona and J. J. Donaire, The converse of Fatou’s theorem for Zygmund measures, Pacific Journal of Mathematics 191 (1999), 207–222.

    Article  MathSciNet  Google Scholar 

  5. E. Damek and F. Ricci, Harmonic analysis on solvable extensions of H-type groups, Journal of Geometric Analysis 2 (1992), 213–248.

    Article  MathSciNet  Google Scholar 

  6. E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, Vol. 92. Cambridge University Press, Cambridge, 1989.

    Book  Google Scholar 

  7. E. S. Dubtsov, The converse of the Fatou theorem for smooth measures, Sankt-Peterburgskoe Otdelenie. Matematicheskiĭ Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI) 315 (2004), 90–95, 157; English translation: Journal of Mathematical Sciences (New York) 134 (2006), 2288–2291.

    MathSciNet  MATH  Google Scholar 

  8. F. W. Gehring, The Fatou theorem and its converse, Transactions of the American Mathematical Society 85 (1957), 106–121.

    Article  MathSciNet  Google Scholar 

  9. F. W. Gehring, The boundary behavior and uniqueness of solutions of the heat equation, Transactions of the American Mathematical Society 94 (1960), 337–364.

    MathSciNet  MATH  Google Scholar 

  10. S. Helgason, Invariant differential equations on homogeneous manifolds, Bulletin of the American Mathematical Society 83 (1977), 751–774.

    Article  MathSciNet  Google Scholar 

  11. A. I. Kheifits, Pointwise Fatou theorem for generalized harmonic functions—normal boundary values, Potential Analysis 3 (1994), 379–389.

    Article  MathSciNet  Google Scholar 

  12. A. A. Logunov, On the boundary behavior of positive solutions of elliptic differential equations, Algebra i Analiz 27 (2015), 125–148; English translation: St. Petersburg Mathematical Journal 27 (2016), 87–102.

    MathSciNet  Google Scholar 

  13. L. H. Loomis, The converse of the Fatou theorem for positive harmonic functions, Transactions of the American Mathematical Society 53 (1943), 239–250.

    Article  MathSciNet  Google Scholar 

  14. M. Naik, S. K. Ray and R.-P. Sarkar, Large time behaviour of heat propagator, Bulletin des Sciences Mathématiques 167 (2021), Article no. 102955.

  15. W. Ramey and D. Ullrich, On the behavior of harmonic functions near a boundary point, Transactions of the American Mathematical Society 305 (1988), 207–220.

    Article  MathSciNet  Google Scholar 

  16. V. D. Repnikov, On the stabilization of the solution of the Cauchy problem for the heat equation in the Bolyai-Lobachevskiĭ plane, Differentsial’nye Uravneniya 38 (2002), 262–270, 287; English translation: Differential Equations 38 (2002), 279–287.

    MATH  Google Scholar 

  17. V. D. Repnikov and S. D. Eidelman, Necessary and sufficient conditions for establishing a solution to the Cauchy problem, Doklady Akademii Nauk SSSR 167 (1966), 298–301.

    MathSciNet  Google Scholar 

  18. V. D. Repnikov and S. D. Eidelman, A new proof of the theorem on the stabilization of the solution of the Cauchy problem for the heat equation, Matematicheskiĭ Sbornik 73 (1967), 155–159.

    MathSciNet  Google Scholar 

  19. W. Rudin, Tauberian theorems for positive harmonic functions, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 40 (1978), 376–384.

    MathSciNet  MATH  Google Scholar 

  20. W. Rudin, Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1991.

    MATH  Google Scholar 

  21. W. Rudin, Function Theory in the Unit Ball ofn, Classics in Mathematics, Springer, Berlin, 2008.

    MATH  Google Scholar 

  22. S. Saeki, On Fatou-type theorems for non-radial kernels, Mathematica Scandinavica 78 (1996), 133–160.

    Article  MathSciNet  Google Scholar 

  23. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, Vol. 32. Princeton University Press, Princeton, NJ, 1971.

    MATH  Google Scholar 

  24. M. Stoll, Harmonic and subharmonic function theory on the hyperbolic ball, London Mathematical Society Lecture Note Series, Vol. 431, Cambridge University Press, Cambridge, 2016.

    Book  Google Scholar 

  25. N. A. Watson, Differentiation of measures and initial values of temperatures, Journal of the London Mathematical Society 16 (1977), 271–282.

    Article  MathSciNet  Google Scholar 

  26. N. A. Watson, Introduction to Heat Potential Theory, Mathematical Surveys and Monographs, Vol. 182, American Mathematical Society, Providence, RI, 2012.

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Swagato K. Ray for suggesting this problem and for many useful discussions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Sarkar.

Additional information

The author is supported by a research fellowship from the Indian Statistical Institute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, J. On the pointwise converse of Fatou’s theorem for Euclidean and real hyperbolic spaces. Isr. J. Math. 250, 179–209 (2022). https://doi.org/10.1007/s11856-022-2336-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2336-0

Navigation