Skip to main content
Log in

Lebesgue’s density theorem and definable selectors for ideals

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce a notion of density point and prove results analogous to Lebesgue’s density theorem for various well-known ideals on Cantor space and Baire space. In fact, we isolate a class of ideals for which our results hold.

In contrast to these results, we show that there is no reasonably definable selector that chooses representatives for the equivalence relation on the Borel sets of having countable symmetric difference. In other words, there is no notion of density which makes the ideal of countable sets satisfy an analogue to the density theorem.

The proofs of the positive results use only elementary combinatorics of trees, while the negative results rely on forcing arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Andretta and R. Camerlo, The descriptive set theory of the Lebesgue density theorem, Advances in Mathematics 234 (2013), 1–42.

    Article  MathSciNet  Google Scholar 

  2. A. Andretta and R. Camerlo, Analytic sets of reals and the density function in the Cantor space, European Journal of Mathematics 5 (2019), 49–80.

    Article  MathSciNet  Google Scholar 

  3. A. Andretta, R. Camerlo and C. Costantini, The density point property, slides of a talk given at the 4th European Set Theory Conference, Mon St. Benet, Catalunya, 2013.

  4. A. Andretta, R. Camerlo and C. Costantini, Lebesgue density and exceptional points, Proceedings of the London Mathematical Society 118 (2019), 103–142.

    Article  MathSciNet  Google Scholar 

  5. M. Balcerzak and S. Głab, A lower density operator for the Borel algebra, Results in Mathematics 75 (2020), Article no. 50.

    Article  MathSciNet  Google Scholar 

  6. J. Brendle, L. Halbeisen and B. Löwe, Silver measurability and its relation to other regularity properties, Mathematical Proceedings of the Cambridge Philosophical Society 138 (2005), 135–149.

    Article  MathSciNet  Google Scholar 

  7. T. Bartoszyński and H. Judah, Set Theory, A K Peters, Wellesley, MA, 1995.

    Book  Google Scholar 

  8. J. Brendle, Y. Khomskii and W. Wohofsky, Cofinalities of Marczewski-like ideals, Colloquium Mathematicum 150 (2017), 269–279.

    Article  MathSciNet  Google Scholar 

  9. J. Brendle and B. Löwe, Solovay-type characterizations for forcing-algebras, Journal of Symbolic Logic 64 (1999), 1307–1323.

    Article  MathSciNet  Google Scholar 

  10. J. Brendle, Strolling through paradise, Fundamenta Mathematicae 148 (1995), 1–25.

    Article  MathSciNet  Google Scholar 

  11. L. Bukovský, The Structure of the Real Line, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series), Vol. 71, Birkhäuser/Springer, Basel, 2011.

    Google Scholar 

  12. J. Cummings, Iterated forcing and elementary embeddings, in Handbook of Set Theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 775–883.

    Chapter  Google Scholar 

  13. S.-D. Friedman, Y. Khomskii and V. Kulikov, Regularity properties on the generalized reals, Annals of Pure and Applied Logic 167 (2016), 408–430.

    Article  MathSciNet  Google Scholar 

  14. Q. Feng, M. Magidor and H. Woodin, Universally Baire sets of reals, in Set Theory of the Continuum (Berkeley, CA, 1989), Mathematical Sciences Research Institute Publications, Vol. 26, Springer, New York, 1992, pp. 203–242.

    Chapter  Google Scholar 

  15. M. Goldstern, M. Repickỳ, S. Shelah and O. Spinas, On tree ideals, Proceedings of the American Mathematical Society 123 (1995), 1573–1581.

    Article  MathSciNet  Google Scholar 

  16. L. Halbeisen, Making doughnuts of Cohen reals, Mathematical Logic Quarterly 49 (2003), 173–178.

    Article  MathSciNet  Google Scholar 

  17. G. Hjorth, Borel equivalence relations, in Handbook of Set Theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 297–332.

    Chapter  Google Scholar 

  18. D. Ikegami, Forcing absoluteness and regularity properties, Annals of Pure and Applied Logic 161 (2010), 879–894.

    Article  MathSciNet  Google Scholar 

  19. T. Jech, Set Theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

    MATH  Google Scholar 

  20. A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Vol. 156, Springer, New York, 1995.

    Google Scholar 

  21. A. S. Kechris, Measure and category in effective descriptive set theory, Annals of Mathematical Logic 5 (1972/73), 337–384.

    Article  MathSciNet  Google Scholar 

  22. V. G. Kanovei and V. A. Lyubetsky, On the equality relation modulo a countable set, Mathematical Notes 108 (2020), 615–616.

    Article  MathSciNet  Google Scholar 

  23. P. Kalemba, S. Plewik and A. Wojciechowska, On the ideal (v0), Central European Journal of Mathematics 6 (2008), 218–227.

    Article  MathSciNet  Google Scholar 

  24. V. Kanovei, M. Sabok and J. Zapletal, Canonical Ramsey Theory on Polish Spaces, Cambridge Tracts in Mathematics, Vol. 202, Cambridge University Press, 2013.

  25. C. Laflamme, L. Nguyen Van Thé, M. Pouzet and N. Sauer, Partitions and indivisibility properties of countable dimensional vector spaces, Journal of Combinatorial Theory. Series A 118 (2011), 67–77.

    Article  MathSciNet  Google Scholar 

  26. B. D. Miller, The existence of quasi-invariant measures of a given cocycle, I: Atomless, ergodic sigma-finite measures, Ergodic Theory and Dynamical Systems 28 (2008), 1599–1613.

    Article  MathSciNet  Google Scholar 

  27. Y. N. Moschovakis, Descriptive Set Theory, Mathematical Surveys and Monographs, Vol. 155, American Mathematical Society, Providence, RI, 2009.

    Book  Google Scholar 

  28. S. Müller and P. Schlicht, Uniformization and internal absoluteness, submitted.

  29. A. Nies, Computability and Randomness, Oxford Logic Guides, Vol. 51, Oxford University Press, Oxford, 2009.

    Book  Google Scholar 

  30. W. Poreda, E. Wagner-Bojakowska and W. Wilczyński, A category analogue of the density topology, Fundamenta Mathematicae 125 (1985), 167–173.

    Article  MathSciNet  Google Scholar 

  31. P. Schlicht, Thin equivalence relations and inner models, Annals of Pure and Applied Logic 165 (2014), 1577–1625.

    Article  MathSciNet  Google Scholar 

  32. R. Schindler and J. Steel, The strength of AD, unpublished note, https://ivv5hpp.uni-muenster.de/u/rds/AD_skript.pdf.

  33. S. Shelah and O. Spinas, Different cofinalities of tree ideals, preprint.

  34. E. Szpilrajn, Sur une classe de fonctions de M. Sierpiński et la classe correspondante d’ensembles, Fundamenta Mathematicae 24 (1935), 17–34.

    Article  Google Scholar 

  35. W. H. Woodin, On the consistency strength of projective uniformization, in Proceedings of the Herbrand Symposium (Marseilles, 1981), Studies in Logic and the Foundations of Mathematics, Vol. 107, North-Holland, Amsterdam, 1982, pp. 365–384.

    Chapter  Google Scholar 

  36. J. Zapletal, Forcing Idealized, Cambridge Tracts in Mathematics, Vol. 174, Cambridge University Press, Cambridge, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Schlicht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, S., Schlicht, P., Schrittesser, D. et al. Lebesgue’s density theorem and definable selectors for ideals. Isr. J. Math. 249, 501–551 (2022). https://doi.org/10.1007/s11856-022-2312-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2312-8

Navigation