Skip to main content
Log in

FitzHugh-Nagumo system with zero mass and critical growth

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show existence of a nontrivial nonnegative solution for the system \( - \Delta u = K(x)f(u) + \gamma {\left| u \right|^{{2^ *} - 2}}u - v,\, - \Delta v = u - v\) in ℝN. Since the function f can verify \(f\prime (0) = 0\), this type of system is known in the literature as zero mass. We analyze three types of problems with K being periodic, asymptotically periodic and with a vanishing property at infinity. In the first place we consider N ≥ 3, and we prove existence results considering the function f with polynomial growth which can be subcritical, corresponding to γ = 0, or critical, in case γ = 1. Finally, we consider specifically N = 2 with γ = 0 and f with possible critical exponential behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. O. Alves, J. M. Bezerra do Ó and O. H. Miyagaki, On perturbations of a class of aperiodic m-Laplacian equation with critical growth, Nonlinear Analysis 45 (2001), 849–863.

    Article  MathSciNet  Google Scholar 

  2. C. O. Alves and G. M. Figueiredo, Existence and multiplicity of positive solutions to a p-Laplacian equation inN, Differential and Integral Equations 19 (2006), 143–162.

    MathSciNet  MATH  Google Scholar 

  3. C. O. Alves, M. A. S. Souto and M. Montenegro, Existence of solution for two classes of elliptic problems inNwith zero mass, Journal of Differential Equations 252 (2012), 5735–5750.

    Article  MathSciNet  Google Scholar 

  4. A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at inßnity, Journal of the European Mathematical Society 7 (2005), 117–144.

    Article  MathSciNet  Google Scholar 

  5. A. Ambrosetti and Z.-Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential and Integral Equations 18 (2005), 1321–1332.

    MathSciNet  MATH  Google Scholar 

  6. A. Azzollini and A. Pomponio, Compactness results and applications to some zero mass elliptic problems, Nonlinear Analysis 69 (2008), 3559–3576.

    Article  MathSciNet  Google Scholar 

  7. M. Badiale, L. Pisani and S. Rolando, Sum of weighted Lebesgue spaces and nonlinear elliptic equations, Nonlinear Differential Equations and Applications 18 (2011), 369–405.

    Article  MathSciNet  Google Scholar 

  8. V. Benci, C. R. Grisanti and A. M. Micheletti, Existence of solutions for the nonlinear Schrödinger equation with V(∞) = 0, Progress in Nonlinear Differential Equations and their Applications 66 (2005), 53–65.

    Article  Google Scholar 

  9. H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Archive for Rational Mechanics and Analysis 82 (1983), 313–346.

    Article  MathSciNet  Google Scholar 

  10. H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence functionals, Proceedings of the American Mathematical Society 8 (1983), 486–490.

    Article  MathSciNet  Google Scholar 

  11. D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in2, Communications in Partial Differential Equations 17 (1992), 407–435.

    Article  MathSciNet  Google Scholar 

  12. C. N. Chen and K. Tanaka, A variational approach for standing waves of FitzHugh–Nagumo type systems, Journal of Differential Equations 257 (2014), 109–144.

    Article  MathSciNet  Google Scholar 

  13. V. Coti-Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE onN, Communications on Pure and Applied Mathematics 45 (1992), 1217–1269.

    Article  MathSciNet  Google Scholar 

  14. E. N. Dancer and S. Yan, A minimization problem associated with elliptic systems of FitzHugh–Nagumo type, Annales de ľInstitut Henri Poincaré. Analyse Non Linéaire 21 (2004), 237–253.

    Article  MathSciNet  Google Scholar 

  15. G. M. Figueiredo and M. Montenegro, Stationary solutions for critical FitzHugh–Nagumo systems, preprint.

  16. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal 1 (1961), 445–466.

    Article  Google Scholar 

  17. M. Ghimenti and A. M. Micheletti, Existence ofminimal nodal solutions for the nonlinear Schrödinger equation with V(∞) = 0, Advances in Differential Equations 11 (2006), 1375–1396.

    MathSciNet  MATH  Google Scholar 

  18. H. Jun, I. Norihisa and K. Tanaka, Nonlinear scalar field equations inN: mountain pass and symmetric mountain pass approaches, Topological Methods in Nonlinear Analysis 35 (2010), 253–276.

    MathSciNet  MATH  Google Scholar 

  19. O.%Kavian, Introduction à la théorie des points critiques et applicatons aux problemes elliptiques, Mathématiques et Applications, Vol. 13, Springer, Berlin–Heidelberg, 1993.

    MATH  Google Scholar 

  20. G. A. Klaasen and E. Mitidieri, Standing wave solutions of a system derived from the FitzHugh–Nagumo equations for nerve conduction, SIAM Journal on Mathematical Analysis 17 (1986), 74–83.

    Article  MathSciNet  Google Scholar 

  21. G. A. Klaasen and W. C. Troy, Standing wave solutions of a system of reaction diffusion equations derived from the FitzHugh–Nagumo equations, SIAM Journal on Applied Mathematics 44 (1984), 96–110.

    Article  MathSciNet  Google Scholar 

  22. G. Li and H. Ye, Existence of positive solutions to semilinear elliptic systems inNwith zero mass, Acta Mathematica Scientia. Series B 33 (2013), 913–928.

    Article  MathSciNet  Google Scholar 

  23. P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. II, Annales de ľInstitut Henri Poincaré. Analyse Non Li’eare 1 (1984), 223–283.

    Article  MathSciNet  Google Scholar 

  24. P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Revista Matemática Iberoamericana 1 (1985), 145–201.

    Article  MathSciNet  Google Scholar 

  25. J. Mederski, Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum, Topological Methods in Nonlinear Analysis 46 (2015), 755–771.

    MathSciNet  MATH  Google Scholar 

  26. J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the Institute of Radio Engineers 50 (1962), 2061–2070.

    Google Scholar 

  27. Y. Oshita, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh–Nagumo equations in higher dimensions, Journal of Differential Equations 188 (2003), 110–134.

    Article  MathSciNet  Google Scholar 

  28. A. A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan Journal of Mathematics 73 (2005), 259–287.

    Article  MathSciNet  Google Scholar 

  29. A. A. Pankov and K. Pflüger, On a semilinear Schrödinger equation with periodic potential, Nonlinear Analysis 33 (1998), 593–609.

    Article  MathSciNet  Google Scholar 

  30. C. Reinecke and G. Sweers, A positive solution onnto a system of elliptic equations of FitzHugh–Nagumo type, Journal of Differential Equations 153 (1999), 292–312.

    Article  MathSciNet  Google Scholar 

  31. G. Sweers and W. C. Troy, On the bifurcation curve for an elliptic system of FitzHugh–Nagumo type, PhysicaD 177 (2003), 1–22.

    MathSciNet  MATH  Google Scholar 

  32. J. Wei and M. Winter, Clustered spots in the FitzHugh–Nagumo system, Journal of Differential Equations 213 (2005), 121–145.

    Article  MathSciNet  Google Scholar 

  33. J. Wei and M. Winter, Standing waves in the FitzHugh–Nagumo system and a problem in combinatorial geometry, Mathematische Zeitschrift 254 (2006), 359–383.

    Article  MathSciNet  Google Scholar 

  34. M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Vol. 24, Birkhäauser, Boston, MA, 1996.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Montenegro.

Additional information

Supported in part by CNPQ, FAPDF and CAPES.

Supported in part by CNPq and FAPESP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, G., Montenegro, M. FitzHugh-Nagumo system with zero mass and critical growth. Isr. J. Math. 245, 711–733 (2021). https://doi.org/10.1007/s11856-021-2224-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2224-z

Navigation