Skip to main content
Log in

Dominated Pesin theory: convex sum of hyperbolic measures

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the uniformly hyperbolic setting it is well known that the set of all measures supported on periodic orbits is dense in the convex space of all invariant measures. In this paper we consider the converse question, in the non-uniformly hyperbolic setting: assuming that some ergodic measure converges to a convex combination of hyperbolic ergodic measures, what can we deduce about the initial measures?

To every hyperbolic measure μ whose stable/unstable Oseledets splitting is dominated we associate canonically a unique class H(μ) of periodic orbits for the homoclinic relation, called its intersection class. In a dominated setting, we prove that a measure for which almost every measure in its ergodic decomposition is hyperbolic with the same index, such as the dominated splitting, is accumulated by ergodic measures if, and only if, almost all such ergodic measures have a common intersection class.

We provide examples which indicate the importance of the domination assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Abdenur, Ch. Bonatti and S. Crovisier, Nonuniform hyperbolicity for C1-generic diffeomorfisms, Israel Journal of Mathematics 183 (2011), 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Avila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings, and generic properties of volume-preserving diffeomorphisms, Transactions of the American Mathematical Society 364 (2012), 2883–2907.

    MATH  Google Scholar 

  3. L. Barreira and Ya. Pesin, Lyapunov Exponents and Smooth Ergodic Theory, University Lecture Series, Vol. 23, American Mathematical Society, Providence, RI, 2002.

    Google Scholar 

  4. A. M. Blokh, Decomposition of dynamical systems on an interval, Uspekhi Matematicheskikh Nauk 38 (1983), 179–180.

    MathSciNet  MATH  Google Scholar 

  5. Ch. Bonatti, Survey: Towards a global view of dynamical systems, for the C1-topology, Ergodic Theory and Dynamical Systems 31 (2011), 959–993.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ch. Bonatti and S. Crovisier, Récurrence et généricité, Inventiones Mathematicae 158 (2004), 33–104.

    Article  MathSciNet  MATH  Google Scholar 

  7. Ch. Bonatti, S. Crovisier and K. Shinohara, The C1+a hypothesis in Pesin theory revisited, Journal of Modern Dynamics 7 (2013), 605–618.

    MathSciNet  MATH  Google Scholar 

  8. Ch. Bonatti, L. J. Díaz and M. Viana, Dynamics beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Encyclopaedia of Mathematical Sciences, Vol. 102, Springer, Berlin, 2005.

    Google Scholar 

  9. J. Buzzi, Specification on the interval, Transactions of the American Mathematical Society 349 (1997), 2737–2754.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Conley, Isolated Invariant sets and the Morse Index, CBMS Regional Conference Series in Mathematics, Vol. 38, American Mathematical Society, Providence, RI, 1978.

    Google Scholar 

  11. S. Crovisier, Partial hyperbolicity far from homoclinic bifurcations, Advances in Mathematics 226 (2011), 673–726.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics, Vol. 527, Springer, Berlin–New York, 1976.

    Google Scholar 

  13. L. Díaz and K. Gelfert, Porcupine-like horseshoes: Transitivity, Lyapunov spectrum, and phase transitions, Fundamenta Mathematicae 216 (2012), 55–100.

    Article  MATH  Google Scholar 

  14. L. Díaz, K. Gelfert and M. Rams, Abundant phase transitions in step skew products, Nonlinearity 27 (2014), 2255–2280.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Díaz, V. Horita, I. Rios and M. Sambarino, Destroying horseshoes via heterodimensional cycles: generating bifurcations inside homoclinic classes, Ergodic Theory and Dynamical Systems 29 (2009), 433–74.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Gan, A generalized shadowing lemma, Discrete and Continuous Dynamical Systems 8 (2002), 627–632.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Hirayama, Periodic probability measures are dense in the set of invariant measures, Discrete and Continuous Dynamical Systems 9 (2003), 1185–1192.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583, Springer, Berlin, 1977.

    Google Scholar 

  19. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications, Vol. 54, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  20. R. Leplaideur, K. Oliveira and I. Rios, Equilibrium states for partially hyperbolic horseshoes, Ergodic Theory and Dynamical Systems 31 (2011), 179–195.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Ma˜né, Ergodic Theory and Differentiable Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 8, Springer, Berlin, 1987.

    Google Scholar 

  22. S. Newhouse, Lectures on dynamical systems, in Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978), Progress in Mathematics, Vol. 8, Birkhäuser, Boston, MA, 1980, pp. 1–14.

    Google Scholar 

  23. C.-E. Pfister and W. G. Sullivan, Large deviations estimates for dynamical systems without the specification property, Nonlinearity 18 (2005), 237–261.

    Article  MathSciNet  MATH  Google Scholar 

  24. C.-E. Pfister and W. G. Sullivan, On the topological entropy of saturated sets, Ergodic Theory and Dynamical Systems 27 (2007), 929–956.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Pugh, The C1+a hypothesis in Pesin theory, Institut des Hautes études Scientifiques. Publications Mathématiques 59 (1984), 143–161.

    Article  MATH  Google Scholar 

  26. F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures, New Criteria for ergodicity and nonuniform hyperbolicity, Duke Mathematical Journal 160 (2011), 599–692.

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms, Inventiones Mathematicae 11 (1970), 99–109.

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Sigmund, On dynamical systems with the specification property, Transactions of the American Mathematical Society 190 (1974), 285–299.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer, New York–Berlin, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairo Bochi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochi, J., Bonatti, C. & Gelfert, K. Dominated Pesin theory: convex sum of hyperbolic measures. Isr. J. Math. 226, 387–417 (2018). https://doi.org/10.1007/s11856-018-1699-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1699-8

Navigation