Skip to main content
Log in

Variational Principle for Nonhyperbolic Ergodic Measures: Skew Products and Elliptic Cocycles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a large class of transitive non-hyperbolic systems, we construct nonhyperbolic ergodic measures with entropy arbitrarily close to its maximal possible value. The systems we consider are partially hyperbolic with one-dimensional central direction for which there are positive entropy ergodic measures whose central Lyapunov exponent is negative, zero, or positive. We construct ergodic measures with zero central Lyapunov exponent whose entropy is positive and arbitrarily close to the topological entropy of the set of points with central Lyapunov exponent zero. This provides a restricted variational principle for nonhyperbolic (zero exponent) ergodic measures. The result is applied to the setting of \(\mathrm {SL}(2,\mathbb {R})\) matrix cocycles and provides a counterpart to Furstenberg’s classical result: for an open and dense subset of elliptic \(\mathrm {SL}(2,\mathbb {R})\) cocycles we construct ergodic measures with upper Lyapunov exponent zero and with metric entropy arbitrarily close to the topological entropy of the set of infinite matrix products with subexponential growth of the norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Proximality holds if for every pair of points \(x,y\in \mathbb {S}^1\) there is \(\xi \in \Sigma _N\) so that \(|f_\xi ^n(x)-f_\xi ^n(y)|\rightarrow 0\) and \(|f_\xi ^{-n}(x)-f_\xi ^{-n}(y)|\rightarrow 0\) as \(n\rightarrow \infty \).

  2. Furstenberg’s result states the dichotomy “positive Lyapunov exponent versus rigid dynamics”. As we are, by hypotheses, in a non-rigid context, this implies always positive exponent.

  3. By [14, Corollary 1.2] (see also [12]), in our setting, the entropy map is upper semi-continuous.

  4. Our focus here is on as-large-as-possible entropy. The GIKN construction can be adapted and extended to produce nonhyperbolic measures with zero entropy and full support (see [7, 8, 10]). The method in [5] was modified in [9] to get nonhyperbolic measures with positive entropy and also full support. It was adapted also in [6] to deal with matrix cocycles. The constructions in this paper lay the foundations to construct nonhyperbolic measures with entropy as large as possible and also full support, following the ideas in [8, 9].

  5. Concerning nonhyperbolic measures with several zero Lyapunov exponents (that is, a higher-dimensional central bundle), the state of the art is very incipient, see results in [4] for iterated function systems and in [31] for some nonhyperbolic homoclinic classes.

  6. As in this paper we consider plenty of sequence spaces, we prefer this terminology.

  7. It holds

    $$\begin{aligned} \sup _{\mu :\mu \circ (\pi ^+\circ \pi _1)^{-1}=\nu ^+}h(F_\mathbf {A},\mu ) =h(\sigma ^+,\nu ^+)+\int _{\Sigma _N^+}h_\mathrm{top}(F_\mathbf {A},(\pi ^+\circ \pi _1)^{-1}(\xi ^+))\,d\nu ^+(\xi ^+). \end{aligned}$$

    It is straightforward to check that \(h_\mathrm{top}(F_\mathbf {A},(\pi ^+\circ \pi _1)^{-1}(\xi ^+))=0\) for every \(\xi ^+\).

  8. The general definition of a coded system allows \(\mathcal {W}\) to be infinite. However, this will not be needed in this paper.

  9. Note that this is slightly weaker than being uniquely decipherable as in [26, Definition 8.1.21].

  10. We use the term simplified to avoid confusion with the term canonical defined above.

  11. Indeed, our particular choice of \((m_n)_n\) in Sect. 10.1 implies convergence, see Lemma 10.2.

  12. In [20], it is assumed that every measure in the sequence is uniformly distributed on a periodic orbit. The results in [32, Chapter 4] imply this criterion, and are in fact considerably more general, but this exact formulation does not appear there. For this reason we state this proposition and, for completeness, also its proof.

References

  1. Avila, A., Bochi, J., Yoccoz, J.-C.: Uniformly hyperbolic finite-valued \({\rm SL}(2,\mathbb{R})\)-cocycles. Comment. Math. Helv. 85, 813–884 (2010)

    Article  MathSciNet  Google Scholar 

  2. Avila, A., Viana, M.: Extremal Lyapunov exponents: an invariance principle and applications. Invent. Math. 181, 115–189 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  3. Barreira, L., Pesin, Y.: Nonuniform hyperbolicity, vol. 115 of encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge (2007). Dynamics of systems with nonzero Lyapunov exponents

  4. Bochi, J., Bonatti, C., Díaz, L.J.: Robust vanishing of all Lyapunov exponents for iterated function systems. Math. Z. 276, 469–503 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bochi, J., Bonatti, C., Díaz, L.J.: Robust criterion for the existence of nonhyperbolic ergodic measures. Commun. Math. Phys. 344, 751–795 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bochi, J., Rams, M.: The entropy of Lyapunov-optimizing measures of some matrix cocycles. J. Mod. Dyn. 10, 255–286 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bonatti, C., Díaz, L.J., Bochi, J.: A criterion for zero averages and full support of ergodic measures. Mosc. Math. J. 18, 15–61 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Bonatti, C., Díaz, L.J., Gorodetski, A.: Non-hyperbolic ergodic measures with large support. Nonlinearity 23, 687–705 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bonatti, C., Díaz, L.J., Kwietniak, D.: Robust existence of nonhyperbolic ergodic measures with positive entropy and full support. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22, 1643–1672 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Bonatti, C., Zhang, J.: Periodic measures and partially hyperbolic homoclinic classes. Trans. Am. Math. Soc. 372, 755–802 (2019)

    Article  MathSciNet  Google Scholar 

  11. Bowen, R.: Topological entropy for noncompact sets. Trans. Am. Math. Soc. 184, 125–136 (1973)

    Article  MathSciNet  Google Scholar 

  12. Cowieson, W., Young, L.-S.: SRB measures as zero-noise limits. Ergodic Theory Dyn. Syst. 25, 1115–1138 (2005)

    Article  MathSciNet  Google Scholar 

  13. Crauel, H.: Extremal exponents of random dynamical systems do not vanish. J. Dyn. Differ. Equ. 2, 245–291 (1990)

    Article  MathSciNet  Google Scholar 

  14. Díaz, L.J., Fisher, T.: Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete Contin. Dyn. Syst. 29, 1419–1441 (2011)

    Article  MathSciNet  Google Scholar 

  15. Díaz, L.J., Gelfert, K., Rams, M.: Nonhyperbolic step skew-products: ergodic approximation. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 1561–1598 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Díaz, L.J., Gelfert, K., Rams, M.: Entropy spectrum of Lyapunov exponents for nonhyperbolic step skew-products and elliptic cocycles. Commun. Math. Phys. 367, 351–416 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Díaz, L.J., Gelfert, K., Santiago, B.: Weak\(*\) and entropy approximation of nonhyperbolic measures: a geometrical approach. Math. Proc. Camb. Philos. Soc. 169, 507–545 (2020)

    Article  MathSciNet  Google Scholar 

  18. Díaz, L.J., Gorodetski, A.: Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes. Ergodic Theory Dyn. Syst. 29, 1479–1513 (2009)

    Article  MathSciNet  Google Scholar 

  19. Furstenberg, H.: Noncommuting random products. Trans. Am. Math. Soc. 108, 377–428 (1963)

    Article  MathSciNet  Google Scholar 

  20. Gorodetski, A.S., Ilyashenko, Y.S., Kleptsyn, V.A., Nalski, M.B.: Nonremovability of zero Lyapunov exponents. Funktsional. Anal. i Prilozhen. 39, 27–38, 95 (2005)

  21. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  22. Kleptsyn, V.A., Nalski, M.B.: Stability of the existence of nonhyperbolic measures for \(C^1\)-diffeomorphisms. Funktsional. Anal. i Prilozhen. 41, 30–45, 96 (2007)

  23. Kwietniak, D., Łacka, M.: Feldman–Katok pseudometric and the GIKN construction of nonhyperbolic ergodic measures (2017)

  24. Ledrappier, F.: Positivity of the exponent for stationary sequences of matrices, in Lyapunov exponents (Bremen: vol. 1186 of Lecture Notes in Math). Springer, Berlin 1986, 56–73 (1984)

  25. Ledrappier, F., Walters, P.: A relativised variational principle for continuous transformations. J. Lond. Math. Soc. (2) 16, 568–576 (1977)

    Article  MathSciNet  Google Scholar 

  26. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  27. Ruelle, D.: An inequality for the entropy of differentiable maps. Bol. Soc. Brasil. Mat. 9, 83–87 (1978)

    Article  MathSciNet  Google Scholar 

  28. Ruelle, D.: Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math., pp. 27–58 (1979)

  29. Tahzibi, A., Yang, J.: Invariance principle and rigidity of high entropy measures. Trans. Am. Math. Soc. 371, 1231–1251 (2019)

    Article  MathSciNet  Google Scholar 

  30. Walters, P.: A variational principle for the pressure of continuous transformations. Am. J. Math. 97, 937–971 (1975)

    Article  MathSciNet  Google Scholar 

  31. Wang, X., Zhang, J.: Ergodic measures with multi-zero Lyapunov exponents inside homoclinic classes. J. Dyn. Differ. Equ. 32, 631–664 (2020)

    Article  MathSciNet  Google Scholar 

  32. Weiss, B.: Single Orbit Dynamics. CBMS Regional Conference Series in Mathematics, vol. 95. American Mathematical Society, Providence, RI (2000)

  33. Yang, D., Zhang, J.: Non-hyperbolic ergodic measures and horseshoes in partially hyperbolic homoclinic classes. J. Inst. Math. Jussieu 19, 1765–1792 (2020)

    Article  MathSciNet  Google Scholar 

  34. Yoccoz, J.-C.: Some questions and remarks about \({\rm SL}(2,\mathbf{R})\) cocycles. In: Modern Dynamical Systems and Applications, pp. 447–458. Cambridge University Press, Cambridge (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Gelfert.

Additional information

Communicated by C. Liverani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research has been supported [in part] by CAPES – Finance Code 001, by CNPq-grants, CNPq Projeto Universal, and E-16/2014 INCT/FAPERJ (Brazil) and by National Science Centre Grant 2019/33/B/ST1/00275 (Poland). The authors acknowledge the hospitality of IMPAN, IM-UFRJ, and PUC-Rio.

Appendix: Proof of Proposition 11.1

Appendix: Proof of Proposition 11.1

Given \(\phi :X\rightarrow \mathbb {R}\), denote

$$\begin{aligned} \underline{\phi }(x)\mathop {=}\limits ^{\mathrm{def}}\liminf _{n\rightarrow \infty }\frac{1}{n}\sum _{k=0}^{n-1}\phi (G^k(x)) {\quad \text { and }\quad } \overline{\phi }(x)\mathop {=}\limits ^{\mathrm{def}}\limsup _{n\rightarrow \infty }\frac{1}{n}\sum _{k=0}^{n-1}\phi (G^k(x)). \end{aligned}$$

Given \(\varepsilon >0\), denote the upper topological limit of \((\Upsilon _{n,\phi ,\varepsilon })_n\) by \(\Upsilon _{\phi ,\varepsilon }\), that is,

$$\begin{aligned} \Upsilon _{\phi ,\varepsilon } \mathop {=}\limits ^{\mathrm{def}}{\bigcap _{k=1}^\infty \overline{\bigcup _{n=k}^\infty \Upsilon _{n,\phi ,\varepsilon }}} =\big \{y\in X:\exists n_k\rightarrow \infty , y_k\in \Upsilon _{n_k,\phi ,\varepsilon },y=\lim _{k\rightarrow \infty }y_k\big \}. \end{aligned}$$

We use the following fact that is straightforward to check.

Claim 11.2

For every continuous \(\phi :X\rightarrow \mathbb {R}\) and \(\varepsilon >0\) it holds

$$\begin{aligned} \varrho (\Upsilon _{\phi ,\varepsilon })\ge \limsup _{n\rightarrow \infty }\varrho _n(\Upsilon _{n,\phi ,\varepsilon }). \end{aligned}$$

Lemma 11.3

For every continuous \(\phi :X\rightarrow \mathbb {R}\) and \(\varepsilon >0\) there exists a set \(\Xi _{\phi ,\varepsilon }\subset \Upsilon _{\phi ,\varepsilon }\) such that \(\varrho (\Xi _{\phi ,\varepsilon })>1-\varepsilon \) and

$$\begin{aligned} \int \phi \,d\varrho -\varepsilon<\overline{\phi }(x)=\underline{\phi }(x) <\int \phi \,d\varrho +\varepsilon \end{aligned}$$

for every \(x\in \Xi _{\phi ,\varepsilon }\).

Proof

Given \(\phi \) and \(\varepsilon \), let \(L=L(\phi ,\varepsilon )\) and for \(\ell \ge L\) let \(N=N(\ell )\) be as in the hypothesis of the proposition. By Claim 11.2 and our hypothesis,

$$\begin{aligned} \varrho (\Upsilon _{\phi ,\varepsilon })\ge \limsup _n\varrho _n(\Upsilon _{n,\phi ,\varepsilon })>1-\varepsilon . \end{aligned}$$

Every \(x\in \Upsilon _{\phi ,\varepsilon }\) is the limit of some sequence of points \(x_i\) in \(\Upsilon _{n_i,\phi ,\varepsilon }\), \(n_i\ge \ell \). Hence, for \(n_i\ge \ell \) sufficiently large, it holds

$$\begin{aligned} \left|\frac{1}{T(\ell )}\sum _{k=0}^{T(\ell )-1}\phi (G^k(x)) -\frac{1}{T(\ell )}\sum _{k=0}^{T(\ell )-1}\phi (G^k(x_i))\right|<\varepsilon . \end{aligned}$$

By our hypothesis on \(x_i\in \Upsilon _{n_i,\phi ,\varepsilon }\), it holds

$$\begin{aligned} \left|\frac{1}{T(\ell )}\sum _{k=0}^{T(\ell )-1}\phi (G^k(x_i)) - \int \phi \,d\varrho \right|<\varepsilon . \end{aligned}$$

Hence, for every \(x\in \Upsilon _{\phi ,\varepsilon }\) and \(\ell \ge 1\) sufficiently large it holds

$$\begin{aligned} \left|\frac{1}{T(\ell )}\sum _{k=0}^{T(\ell )-1}\phi (G^k(x)) - \int \phi \,d\varrho \right|<2\varepsilon . \end{aligned}$$

Therefore, with the notation above, for every \(x\in \Upsilon _{\phi ,\varepsilon }\)

$$\begin{aligned} \overline{\phi }(x) > \int \phi \,d\varrho -2\varepsilon {\quad \text { and }\quad } \underline{\phi }(x) < \int \phi \,d\varrho +2\varepsilon . \end{aligned}$$

Applying the Birkhoff theorem to the invariant measure \(\varrho \), we get a set Z with \(\varrho (Z)=1\) so that at every \(z\in Z\) it holds \(\overline{\phi }(z)=\underline{\phi }(z)\). By the above, for every \(z\in \Xi _{\phi ,\varepsilon }\mathop {=}\limits ^{\mathrm{def}}Z\cap \Upsilon _{\phi ,\varepsilon }\) it holds \(|\overline{\phi }(z)-\phi (\varrho )|<3\varepsilon \) and \(\varrho (\Xi _{\phi ,\varepsilon })=\varrho (\Upsilon _{\phi ,\varepsilon })>1-\varepsilon \). This proves the lemma.

\(\square \)

Let us now prove that \(\varrho \) is ergodic. Take a dense set of continuous functions \(\{\phi _k\}_k\) and a summable sequence of positive numbers \((\varepsilon _k)_k\). As

$$\begin{aligned} \sum _k\varrho (\Upsilon _{\phi _k,\varepsilon _k}^c) \le \sum _k\varepsilon _k<\infty , \end{aligned}$$

by the Borel–Cantelli lemma, there is a set \(\Upsilon \) satisfying \(\varrho (\Upsilon )=1\) such that every \(x\in \Upsilon \) is contained in only finitely many sets \(\Upsilon _{\phi _k,\varepsilon _k}^c\). It follows that for every continuous \(\phi \) and \(x\in \Upsilon \) Birkhoff averages of \(\phi \) converge to \(\int \phi \,d\varrho \). This implies that \(\varrho \) is G-ergodic.

\(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, L.J., Gelfert, K. & Rams, M. Variational Principle for Nonhyperbolic Ergodic Measures: Skew Products and Elliptic Cocycles. Commun. Math. Phys. 394, 73–141 (2022). https://doi.org/10.1007/s00220-022-04406-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04406-w

Navigation