Skip to main content
Log in

Families Of K3 surfaces and Lyapunov exponents

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Consider a family of K3 surfaces over a hyperbolic curve (i.e., Riemann surface). Their second cohomology groups form a local system, and we show that its top Lyapunov exponent is a rational number. One proof uses the Kuga–Satake construction, which reduces the question to Hodge structures of weight 1. A second proof uses integration by parts. The case of maximal Lyapunov exponent corresponds to modular families coming from the Kummer construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bump, Lie Groups, Graduate Texts in Mathematics, Vol. 225, Springer, New York, 2013.

    Google Scholar 

  2. S. Cantat, Dynamique des automorphismes des surfaces K3, Acta Mathematica 187 (2001), 1–57.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Carlson, S. Müller-Stach and C. Peters, Period Mappings and Period Domains, Cambridge Studies in Advanced Mathematics, Vol. 85, Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  4. J. Daniel and B. Deroin, Lyapunov exponents of the Brownian motion on a Kähler manifold, ArXiv e-prints (2017).

    Google Scholar 

  5. P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin–New York, 1970.

    Google Scholar 

  6. P. Deligne, Travaux de Griffiths, in Séminaire Bourbaki 376 (juin 1970), Lecture Notes in Mathematics, Vol. 180, Springer, Bewerlin, 1971, pp. 213–237.

    Google Scholar 

  7. P. Deligne, La conjecture de Weil pour les surfaces K3, Inventones Mathematicae 15 (1972), 206–226.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Eskin, M. Kontsevich, M. Moeller and A. Zorich, Lower bounds for Lyapunov exponents of flat bundles on curves, Geometry & Topology, to appear.

  9. A. Eskin, M. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publications Mathématiques. lnstitut de Hautes Études Sientifiques 120 (2014), 207–333.

    Article  MATH  Google Scholar 

  10. A. Eskin and C. Matheus, A coding-free simplicity criterion for the Lyapunov exponents of Teichmüller curves, Geometriae Dedicata 179 (2015), 45–67.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Filip, Semisimplicity and rigidity of the Kontsevich–Zorich cocycle, Inventiones Mathematicae 205 (2016), 617–670.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Filip, Zero Lyapunov exponents and monodromy of the Kontsevich–Zorich cocycle, Duke Mathematical Journal 166 (2017), 657–706.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Annals of Mathematics 155 (2002), 1–103.

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Fougeron, Parabolic degrees and Lyapunov exponents for hypergeometric local systems, ArXiv e-prints (2017).

    Google Scholar 

  15. P. Griffiths and J. Harris, Principles of Algebraic Geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978.

    Google Scholar 

  16. I. Y. Goldsheĭd and G. A. Margulis, Lyapunov exponents of a product of random matrices, Uspekhi Matematicheskikh Nauk 44 (1989), 13–60.

    MathSciNet  Google Scholar 

  17. P. Griffiths and W. Schmid, Locally homogeneous complex manifolds, ActaMathematica 123 (1969), 253–302.

    MathSciNet  MATH  Google Scholar 

  18. H. Hartmann, Period- and mirror-maps for the quartic K3, Manuscripta Mathematica 141 (2013), 391–422.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Huybrechts, Lectures on K3 Surfaces, Cambridge Studies in Advanced Mathematics, Vol. 158, Cambridge University Press, Cambridge, 2016.

    Google Scholar 

  20. Géométrie des surfaces K3: modules et périodes, Société Mathématique de France, Paris, 1985, Papers from the seminar held in Palaiseau, October 1981–January 1982, Astérisque No. 126 (1985).

  21. V. A. Kaĭmanovich, Lyapunov exponents, symmetric spaces and a multiplicative ergodic theorem for semisimple Lie groups, Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR (LOMI) 164 (1987), 29–46, 196–197.

    Google Scholar 

  22. A. Kappes and M. Möller, Lyapunov spectrum of ball quotients with applications to commensurability questions, Duke Mathematical Journal 165 (2016), 1–66.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Kontsevich, Lyapunov exponents and Hodge theory, in The Mathematical Beauty of Physics (Saclay, 1996), Advanced Series in Mathematical Physics, Vol. 24, World Scientific, River Edge, NJ, 1997, pp. 318–332.

    Google Scholar 

  24. M. Kuga and I. Satake, Abelian varieties attached to polarized K3-surfaces, Mathematische Annalen 169 (1967), 239–242.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Ledrappier, Quelques propriétés des exposants caractéristiques, in École d’été de probabilités de Saint-Flour, XII—1982, Lecture Notes in Mathematics, Vol. 1097, Springer, Berlin, 1984, pp. 305–396.

    Google Scholar 

  26. D. Maulik, Supersingular K3 surfaces for large primes, Duke Mathematical Journal 163 (2014), 2357–2425.

    Article  MathSciNet  MATH  Google Scholar 

  27. C. T. McMullen, Dynamics on K3 surfaces: Salem numbers and Siegel disks, Journal für die Reine und Angewandte Mathematik 545 (2002), 201–233.

    MathSciNet  MATH  Google Scholar 

  28. C. T. McMullen, The Gauss-Bonnet theorem for cone manifolds and volumes of moduli spaces, American Journal of Mathematics 139 (2017), 261–291.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. S. Milne, Automorphic vector bundles on connected Shimura varieties, Inventiones Mathematicae 92 (1988), 91–128.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. R. Morrison, On K3 surfaces with large Picard number, Inventiones Mathematicae 75 (1984), 105–121.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Maulik and R. Pandharipande, Gromov–Witten theory and Noether–Lefschetz theory, in A Celebration of Algebraic Geometry, Clay Mathematics Proceedings, Vol. 18, American Mathematical Society, Providence, RI, 2013, pp. 469–507.

    Google Scholar 

  32. D. Mumford, Hirzebruch’s proportionality theorem in the noncompact case, Inventiones Mathematicae 42 (1977), 239–272.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. A. M. Peters and J. H. M. Steenbrink, Monodromy of variations of Hodge structure, Acta Applicandae Mathematicae 75 (2003), 183–194.

    Article  MathSciNet  MATH  Google Scholar 

  34. W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Inventiones Mathematicae 22 (1973), 211–319.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. P. Smith, Picard–Fuchs Differential Equations for Families of K3 Surfaces, ArXiv e-prints (2007).

    Google Scholar 

  36. X. Sun, S.-L. Tan and K. Zuo, Families of K3 surfaces over curves reaching the Arakelov–Yau type upper bounds and modularity, Mathematical Research Letters 10 (2003), 323–342.

    Article  MathSciNet  MATH  Google Scholar 

  37. B. van Geemen, Kuga–Satake varieties and the Hodge conjecture, in The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Science Series C: Mathematical and Physical Sciences, Vol. 548, Kluwer, Dordrecht, 2000, pp. 51–82.

    Chapter  Google Scholar 

  38. È. B. Vinberg, V. V. Gorbatsevich and A. L. Onishchik, Structure of Lie groups and Lie algebras, in Current Problems in Mathematics. Fundamental Directions, Vol. 41, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990, pp. 5–259.

    Google Scholar 

  39. C. Voisin, Hodge Theory and Complex Algebraic Geometry. I, Cambridge Studies in Advanced Mathematics, Vol. 76, Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  40. E. Viehweg and K. Zuo, A characterization of certain Shimura curves in the moduli stack of abelian varieties, Journal of Differential Geometry 66 (2004), 233–287.

    Article  MathSciNet  MATH  Google Scholar 

  41. F. Yu, Eigenvalues of curvature, Lyapunov exponents and Harder–Narasimhan filtrations, Geometry & Topology, to appear.

  42. A. Zorich, How do the leaves of a closed 1-form wind around a surface?, in Pseudoperiodic Topology, American Mathematical Society Translations, Series 2, Vol. 197, American Mathematical Society, Providence, RI, 1999, pp. 135–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simion Filip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filip, S. Families Of K3 surfaces and Lyapunov exponents. Isr. J. Math. 226, 29–69 (2018). https://doi.org/10.1007/s11856-018-1682-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1682-4

Navigation