Skip to main content
Log in

Non-trivial smooth families of K3 surfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let X be a complex K3 surface, \(\textrm{Diff}(X)\) the group of diffeomorphisms of X and \(\textrm{Diff}_0(X)\) the identity component. We prove that the fundamental group of \(\textrm{Diff}_0(X)\) contains a free abelian group of countably infinite rank as a direct summand. The summand is detected using families Seiberg–Witten invariants. The moduli space of Einstein metrics on X is used as a key ingredient in the proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Baraglia, D.: Obstructions to smooth group actions on \(4\)-manifolds from families Seiberg–Witten theory. Adv. Math. 354, 106730 (2019)

  2. Baraglia, D., Konno, H.: A gluing formula for families Seiberg–Witten invariants. Geom. Topol. 24(3), 1381–1456 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baraglia, D., Konno, H.: On the Bauer–Furuta and Seiberg–Witten invariants of families of \(4\)-manifolds. J. Topol. 15(2), 505–586 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baraglia, D., Konno, H.: A note on the Nielsen realization problem for K3 surfaces. Proc. Am. Math. Soc. arXiv:1908.11613 (2019) (to appear)

  5. Besse, A.L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10. Springer, Berlin (1987). xii+510 pp

  6. Bustamante, M., Krannich, M., Kupers, A.: Finiteness properties of automorphism spaces of manifolds with finite fundamental group. arXiv:2103.13468 (2021)

  7. Corro, D., Kordass, J.-B.: Short survey on the existence of slices for the space of Riemannian metrics. In: Proceedings of the IV Meeting of Mexican Mathematicians Abroad 2018. arXiv:1904.07031 (2019) (to appear)

  8. Ebin, D.G.: The manifold of Riemannian metrics. 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968) pp. 11–40. Amer. Math. Soc., Providence

  9. Giansiracusa, J.: The diffeomorphism group of a \(K3\) surface and Nielsen realization. J. Lond. Math. Soc. (2) 79(3), 701–718 (2009) [Corrigendum: https://doi.org/10.1112/jlms.12194]

  10. Giansiracusa, J., Kupers, A., Tshishiku, B.: Characteristic classes of bundles of \(K3\) manifolds and the Nielsen realization problem. Tunis. J. Math. 3(1), 75–92 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirsch, M.W.: Differential topology. Graduate Texts in Mathematics, vol. 33. Springer, New York (1976). x+221 pp

  12. Hitchin, N.: Compact four-dimensional Einstein manifolds. J. Differ. Geom. 9, 435–441 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Koiso, N.: Einstein metrics and complex structures. Invent. Math. 73(1), 71–106 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, T.-J., Liu, A.-K.: Family Seiberg–Witten invariants and wall crossing formulas. Commun. Anal. Geom. 9(4), 777–823 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Müller, C., Wockel, C.: Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group. Adv. Geom. 9(4), 605–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nicolaescu, L.I.: Notes on Seiberg–Witten theory. Graduate Studies in Mathematics, vol. 28. American Mathematical Society, Providence (2000). xviii+484 pp

  17. Ruberman, D.: An obstruction to smooth isotopy in dimension \(4\). Math. Res. Lett. 5(6), 743–758 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ruberman, D.: A polynomial invariant of diffeomorphisms of 4-manifolds. In: Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry (1999), pp. 473–488 (electronic)

  19. Smirnov, G.: From flops to diffeomorphism groups. arXiv:2002.01233 (2020)

  20. Steenrod, N.: The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 14. Princeton University Press, Princeton (1951). viii+224 pp

  21. Watanabe, T.: Some exotic nontrivial elements of the rational homotopy groups of \({\rm Diff}(S^4)\). arXiv:1812.02448v3 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Baraglia.

Ethics declarations

Conflict of interest

The author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraglia, D. Non-trivial smooth families of K3 surfaces. Math. Ann. 387, 1719–1744 (2023). https://doi.org/10.1007/s00208-022-02508-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02508-3

Navigation